FACTORS AFFECTING THE ADOPTION OF MOBILE PAYMENT SYSTEM AMONG MILLENNIALS AND GENERATION X IN MALAYSIA
Journal of Economics and Trade, Volume 7, Issue 2,
Page 34-52
DOI:
10.56557/jet/2022/v7i28111
Abstract
This study investigates factors affecting the adoption of mobile payment systems among Millennials and Generation X in Malaysia by applying the Theory of Reasoned Action (TRA), the Theory of Planned Behaviour (TPB), the Technology Acceptance Model (TAM), and the Unified Theory of Acceptance and Use of Technology (UTAUT). The online questionnaire was conducted to collect data from 103 respondents. By using the regression analysis, the findings show that effort expectation and social influence are significant to adopting a mobile payment system among Millennials and Generation X in Malaysia. In contrast, performance expectations, perceived risk, and perceived cost are insignificant. The study has improved the understanding of Millennial and Generation X’s perception on mobile payment systems in Malaysia. Some recommendation to enhance the usage of mobile payment system among the Millennials and Generation X in Malaysia is provided at the end of the study.
- Mobile payment
- effort expectation
- social influence
- perceived risk
- perceived cost
How to Cite
References
Kang J. Mobile payment in Fintech environment: trends, security challenges, and services. Hum Cent Comput Inf Sci. 2018;8(1):32. DOI: 10.1186/s13673-018-0155-4.
Kagan J. Financial technology – fintech. Investopedia; 2020. Available:https://www.investopedia.com/terms/f/fintech.asp.
Tyagi N. What is fintech? Examples and applications; 2021. Available:https://www.analyticssteps.com/blogs/what-fintech-examples-and-applications.
Aydin G, Burnaz S. Adoption of mobile payment systems: A study on mobile wallets. J Bus Econ Fin. 2016;5(1):73-92.
Grant M. Mobile payment: payments made from a smartphone or tablet; 2022. Available:https://www.investopedia.com/terms/m/mobile-payment.asp.
Oppotus. E-wallet usage in Malaysia 2020: thriving in lockdown; 2020. Available: https://www.oppotus.com/e-wallet-usage-in-malaysia-2020/.
Ikram I. E-wallet, QR payments and online banking surged exponentially in one year up to June 2021, says Tengku Zafrul; 2021. Available:https://www.theedgemarkets.com/article/ewallet-qr-payments-and-online-banking-surged-exponentially-one-year-june-2021-says-tengku.
Yaokumah W, Kumah P, Okai ESA. Demographic influences on e-payment services. International Journal of E-Business Research. 2017;13(1):44-65. DOI: 10.4018/IJEBR.2017010103.
Yeow PM, Khalid H, Nadarajah D. Millennials perception on mobile payment services in Malaysia,procedia computer science. 2017;124:397-404 ISSN 1877-0509. DOI: 10.1016/j.procs.2017.12.170.
Chuah S, Cao Stella S, Guo Trey J, Lian Ivey Z. Consumers’ adoption of mobile payment: comparison between China and Malaysia. Adv Bus Res Int J. 2019;5(2):43-50. DOI: 10.24191/abrij.v5i2.9980.
Statista. Mobile POS payments; 2021. Available:https://www.statista.com/outlook/dmo/fintech/digital-payments/mobile-pos-payments/malaysia.
Grant M. Mobile payment; 2021. Available: https://www.investopedia.com/terms/m/mobile-payment.asp.
McKenna A. Generation x; 2021. Encyclopaedia Britannica. Available: https://www.britannica.com/topic/Generation-X.
Ajzen I, Fishbein M. Understanding Attitudes and Predicting Social Behavior. Englewood Cliffs, NJ: Prentice Hal; 1980.
Fishbein M, Ajzen I. Belief, attitude, intention, and behavior: an introduction to theory and research. Philos Rhet. 1977;10(2).
Bronfenbrenner U. The ecology of human development: experiments by nature and design. Harvard University press; 1979.
Sheppard BH, Hartwick JM, Warshaw PR. The theory of reasoned action: A meta-analysis of past research with recommendations for modifications and future research. J Con Res. 1988;15(3):325-43. DOI: 10.1086/209170.
Ajzen I. The theory of planned behavior. Organ Behav Hum Decis Processes. 1991;50(2):179-211. DOI: 10.1016/0749-5978(91)90020-T.
Ajzen I. Constructing a theory of planned behavior questionnaire. 2006;1-12.
Mathieson K. Predicting user intentions: comparing the technology acceptance model with the theory of planned behavior. Inf Syst Res. 1991;2(3):173-91. DOI: 10.1287/isre.2.3.173.
Ajzen I, Fishbein M. Attitude-behavior relations: A theoretical analysis and review of empirical research. Psychol Bull. 1977; 84(5):888-918. DOI: 10.1037/0033-2909.84.5.888.
Davis FD. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989;13(3):319-40. DOI: 10.2307/249008.
Bagozzi RP, Davis FD, Warshaw PR. Development and test of a theory of technological learning and usage. Hum Relat. 1992;45(7):659-86. DOI: 10.1177/001872679204500702.
Filona , Misdiyono . Factors affecting the adoption of electronic money using technology acceptance model and theory of planned behavior. J Bus Econ. 2019;24(1):100-13. DOI: 10.35760/eb.2019.v24i1.1858.
Davis FD, Bagozzi RP, Warshaw PR. User acceptance of computer technology: A comparison of two theoretical models. Manag Sci. 1989;35(8):982-1003. DOI: 10.1287/mnsc.35.8.982.
Surendran P. Technology acceptance model: A survey of literature. Int J Bus Soc Res. 2012;2(4):175-8.
Ramayah, T. & Ling. Chin & M. Suki, Norazah & Ibrahim, Amlus. 2005. Determinants of intention to use an online bill payment system among MBA students. International Journal of Electronic Business - IJEB.
Hong WY, Thong JYL, Wong WM, Tam KY. Determinants of user acceptance of digital libraries: an empirical examination of individual differences Y and system characteristics. J Manag Inf Syst. 2002; 18(3):97-124. DOI: 10.1080/07421222.2002.11045692.
Ervasti M, Helaakoski H. Case study of application-based mobile service acceptance and development in Finland. Int J Inf Technol Manag. 2010;9(3):243-59. DOI: 10.1504/IJITM.2010.030942.
Pai FY, Huang KI. Applying the technology acceptance model to the introduction of healthcare information systems. Technological forecasting and social change; 2011.
Mallat N, Rossi M, Tuunainen VK, Öörni A. The impact of use context on mobile services acceptance: the case of mobile ticketing. Inf Manag. 2009;46(3):190-5. DOI: 10.1016/j.im.2008.11.008.
Lorenzo Romero C, Alarcón de Amo MdC, Gómez Borja MÁ. Adopción de redes sociales virtuales: ampliación del modelo de aceptación tecnológica integrando confianza y riesgo percibido [Adoption of virtual social networks: expansion of the technology acceptance model integrating trust and perceived risk]. Cuad Econ Dirección Empresa. 2011;14(3):194-205. DOI: 10.1016/j.cede.2010.12.003.
Liébana-Cabanillas F. El Papel de los sistemas de pago en los nuevos entornos electrónicos [The role of payment systems in the new electronic environments] [doctoral thesis]. Department of Marketing and Market Research Communications. Universidad de Granada; 2012.
Francisco, Sánchez-Fernández J, Muñoz-Leiva F. De Luna, Iviane Ramos & Liébana-Cabanillas. "Mobile payment is not all the same: The adoption of mobile payment systems depending on the technology applied," Technological Forecasting and Social Change, Elsevier. 2019;146(C):931-44.
Gefen D. Customer loyalty in e-commerce. J Assoc Inf Syst. 2002;3(1):27-53. DOI: 10.17705/1jais.00022.
Legris P, Ingham J, Collerette P. Why do people use information technology? A critical review of the technology acceptance model. Inf Manag. 2003;40(3):191-204. DOI: 10.1016/S0378-7206(01)00143-4.
Lee C, Hu W, Yeh J. A system model for mobile commerce. Proceedings of the 23rd international conference on distributed computing systems workshops, Providence, RI, USA. IEEE Trans Haptics. 2003;19-22.
Hung SY, Ku CY, Chang CM. Critical factors of WAP services adoption: an empirical study. Electron Com Res Appl. 2003;2(1):42-60. DOI: 10.1016/S1567-4223(03)00008-5.
Hew J-J, Lee V-H, Ooi K-B, Wei J. What catalyses mobile apps usage intention: an empirical analysis. Ind Manag Data Syst. 2015;115(7):1269-91. DOI: 10.1108/IMDS-01-2015-0028.
Wu JH, Wang SC. What drives mobile commerce. An empiricalevaluation of the revised technology acceptance model. Inf Manag. 2005;42(5):719-29. DOI: 10.1016/j.im.2004.07.001.
Venkatesh V, Morris MG, Davis GB, Davis FD. User acceptance of information technology: toward a unified view. MIS Q. 2003;27(3):425-78. DOI: 10.2307/30036540.
Venkatesh V, Morris MG. Why don’t men ever stop to ask for directions? gender, social influence, and their role in technology acceptance and usage behavior. MIS Q. 2000;24(1):115-39. DOI: 10.2307/3250981.
Patil PP, Dwivedi YK, Rana NP. Digital payments adoption: an Analysis of literature. In: Proceedings of the conference on E-business e services and E-society. 2017;61-70. DOI: 10.1007/978-3-319-68557-1_7.
Slade EL, Dwivedi YK, Piercy NC, Williams MD. Modeling consumers’adoption intentions of remote mobile payments in the United Kingdom: extending UTAUT with innovativeness, risk, and trust. Psychol Mark. 2015b;32(8):860-73. DOI: 10.1002/mar.20823.
Al-Saedi K, Al-Emran M, Ramayah T, Abusham E. Developing a general extended UTAUT model for M-payment adoption. Technol Soc. 2020;62:101293. DOI: 10.1016/j.techsoc.2020.101293.
Hall PA 2016. Intention. Encyclopedia of behavioural medicine. New York: Springer.
Spears N, Singh SN. Measuring attitude toward the brand and purchase intentions. J Curr Issues Res Advertising. 2004;26(2):53-66. DOI: 10.1080/10641734.2004.10505164.
Venkatesh V, Bala H. Technology acceptance model 3 and a research agenda on interventions. Decis Sci. 2008;39(2):273- 315. DOI: 10.1111/j.1540-5915.2008.00192.x.
Rogers EM. Diffusion of innovations. 5th ed. New York: Free Press; 2003.
Mahajan V, Peterson RA. Models for innovation adoption. Newbury Park, CA: SAGE; 1985.
Ting H, Yacob Y, Liew L, Lau WMIntention to Use Mobile Payment System: a Case of Developing Market by Ethnicity. Procedia Soc Behav Sci. 2016;224:368-75. DOI: 10.1016/j.sbspro.2016.05.390.
Liébana-Cabanillas F, Marinkovic V, Ramos de Luna IR, Kalinic Z. Predicting the determinants of mobile payment acceptance: A hybrid SEM-neural network approach. Technol Forecasting Soc Change. 2018;129:117-30. DOI: 10.1016/j.techfore.2017.12.015.
Leong L-Y, Hew T-S, Tan GW-H, Ooi K-B. Predicting the determinantsof the NFC-enabled mobile credit card acceptance: a neural networks approach. Expert Syst Appl. 2013; 40(14):5604-20. DOI: 10.1016/j.eswa.2013.04.018.
Miltgen CL, Popovic A, Oliveira T. Determinants of end-user acceptance of biometrics: integrating the ”Big 3” of technology acceptance with privacy context. Decis Support Syst. 2013;56:103.e114.
Kim B, Kang M, Jo H. Determinants of postadoption behaviors of mobile communications applications: A dual-model perspective. Int J Hum-Comput Int. 2014; 30(7):547-59. DOI: 10.1080/10447318.2014.888501.
Hanif Y, Lallie HS. Security factors on the intention to use mobile banking applications in the UK older generation (55+). A mixed-method study using modified UTAUT and MTAM - with perceived cyber security, risk, and trust. Technol Soc. 2021;67:101693. DOI: 10.1016/j.techsoc.2021.101693.
Lebas MJ. Performance measurement and performance management. Int J Prod Econ. 1995;41(1-3):23-35. DOI: 10.1016/0925-5273(95)00081-X.
Frank D, Kafkas A. Expectation-driven novelty effects in episodic memory. Neurobiol Learn Mem. 2021;183:107466. DOI: 10.1016/j.nlm.2021.107466
Park S-J, Yi Youjae. A composite measure of performance–expectation and performance-only measures. Serv Ind J. 2017;37(15-16):936-47. DOI: 10.1080/02642069.2017.1369968.
Venkatesh V, Thong JY, Xu X. Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Q. 2012;36(1):157-78. DOI: 10.2307/41410412.
Ibrahim M, Siddiqui DA. Factors Affecting Retailer’s Adoption of Mobile Payment System in Pakistan using UTAUT and TAM Theoretical Framework. Available at SSRN 3756694; 2020. DOI: 10.2139/ssrn.3756694.
Nur Fathin AR, Roslina I, Yazriwati Y, Norziha M MZ, Suraya Y, Rasimah CM. Consumers’ intention to use mobile payment: a case of quick response (QR) code applications/Nur Fathin A. Rosli...[et al.]. Mathematical Sciences and Informatics Journal (MIJ). 2020;1(1):20-34.
Oliveira T, Thomas M, Baptista G, Campos F. Mobile payment: understanding the determinants of customer adoption and intention to recommend the technology. Comput Hum Behav. 2016;61:404-14. DOI: 10.1016/j.chb.2016.03.030.
Rahman M, Ismail I, Bahri S. Analysing consumer adoption of cashless payment in Malaysia. Digital business. 2020;1(1):100004.
Tian Y, Dong H. An analysis of key factors affecting user acceptance of mobile payment. In: Proceedings of the second international conference on informatics & applications (ICIA). 2013;240-6. DOI: 10.1109/ICoIA.2013.6650263.
Wulandari N. Cashless payment in tourism. An application of technology acceptance model. J Environ Manag Tourism. 2017;8(8):1550-3. DOI: 10.14505/jemt.v8.8(24).10.
Alaeddin O, Altounjy R, Zainudin Z, Kamarudin F. From physical to digital: investigating consumer behaviour of switching to mobile wallet. Pol J Manag Stud. 2018;17(2):18-30. DOI: 10.17512/pjms.2018.17.2.02.
Bailey AA, Pentina I, Mishra AS, Ben Mimoun MS. Mobile payments adoption by US consumers: an extended TAM. Int J Retail Distrib Manag. 2017;45(6):626-40. DOI: 10.1108/IJRDM-08-2016-0144.
Aslam W, Ham M, Arif I. Consumer behavioral intentions towards mobile payment services: an empirical analysis in pakistan. Mark Tržište. 2017;29(2):161-76. DOI: 10.22598/mt/2017.29.2.161.
Chakraborty M, Al Rashdi S. Venkatesh et al.'s Unified Theory of Acceptance and Use of Technology (UTAUT) (2003). In I. Management Association (Ed.), Technology Adoption and Social Issues: Concepts, Methodologies, Tools, and Applications 2018;1657-1674. IGI Global. Available: http://doi:10.4018/978-1-5225-5201-7.ch077
Abu-Shanab E, Pearson JM. Internet banking in Jordan: an Arabic instrument validation process. Int Arab J Inf Technol. 2009;6(3):235-44.
Martins C, Oliveira T, Popovič A. Understanding the Internet banking adoption: A unified theory of acceptance and use of technology and perceived risk application. Int J Inf Manag. 2014;34(1):1-13. DOI: 10.1016/j.ijinfomgt.2013.06.002.
Qasim H, Abu-Shanab E. Drivers of mobile payment acceptance: the impact of network externalities. Inf Syst Front. 2016;18(5):1021-34. DOI: 10.1007/s10796-015-9598-6.
Santosa AD, Taufik N, Prabowo FHE, Rahmawati M. Continuance intention of baby boomer and X generation as new users of digital payment during COVID-19 pandemic using UTAUT2. J Financ Serv Mark. 2021; 26(4):259-73. DOI: 10.1057/s41264-021-00104-1.
Zhou T. The effect of initial trust on user adoption of mobile payment. Inf Dev. 2011;27(4):290-300. DOI: 10.1177/02666.
Lin X, Wu R, Lim YT, Han J, Chen SC. Understanding the sustainable usage intention of mobile payment technology in Korea: cross-countries comparison of Chinese and Korean users. Sustainability. 2019;11(19):5532. DOI: 10.3390/su11195532.
Lin WR, Lin CY, Ding YH. Factors affecting the behavioral intention to adopt mobile payment: an empirical study in Taiwan. Mathematics. 2020;8(10):1851. DOI: 10.3390/math8101851.
Gupta K, Arora N. Investigating consumer intention to accept mobile payment systems through unified theory of acceptance model: an Indian perspective. S Asian J Bus Stud. 2019;9(1):88-114. DOI: 10.1108/SAJBS-03-2019-0037.
Burnaz S, Aydin G. Adoption of mobile payment systems: a study on mobile wallets. Pressacademia. 2016;5(1):73. DOI: 10.17261/Pressacademia.2016116555.
Nur T, Panggabean RR. Factors influencing the adoption of mobile payment method among generation Z: the extended UTAUT approach. Nur, T. and Panggabean. Res Rev. 2021:14- 28.
Guzzo T, Ferri F, Grifoni P. A model of e-commerce adoption (MOCA): consumer’s perceptions and behaviours. Behav Inf Technol. 2016;35(3):196-209. DOI: 10.1080/0144929X.2015.1132770.
Herget N, Steinmüller Krey P. Mobile payment adoption during the Covid-19 pandemic: A quantitative study in Germany; 2021.
Mun YP, Khalid H, Nadarajah D. Millennials’ perception on mobile payment services in Malaysia. Procedia Comput Sci. 2017;124:397-404. DOI: 10.1016/j.procs.2017.12.170.
Khalifa M, Ning Shen KN. Explaining the adoption of transactional B2C mobile commerce. J Enterpr Inf Manag. 2008;21(2): 110-24. DOI: 10.1108/17410390810851372.
Putri AF, Handayani PutuWuri, Shihab MR, Akhloufi M. Environment factors affecting individual’s continuance usage of mobile payment technology in Indonesia. Cogent Eng. 2020;7(1):1. DOI: 10.1080/23311916.2020.1846832.
Hunafa K, Hidayanto AN, Sandhyaduhita P. Investigating mobile payment acceptance using technological-personal-environmental (TPE) framework: A case of Indonesia. In: International Conference on Advanced Computer Science and Information Systems (ICACSIS). IEEE Publications. 2017;159-65. DOI: 10.1109/ICACSIS.2017.8355027.
Oliveira T, Thomas M, Baptista G, Campos FMobile payment: understanding the determinants of customer adoption and intention to recommend the technology. Comput Hum Behav. 2016;61:404-14. DOI: 10.1016/j.chb.2016.03.030.
Zhang L, Zhu J, Liu Q. A meta-analysis of mobile commerce adoption and the moderating effect of culture. Comput Hum Behav. 2012;28(5):1902-11. DOI: 10.1016/j.chb.2012.05.008.
Thakur R, Srivastava M. Adoption readiness, personal innovativeness, perceived risk and usage intention across customer groups for mobile payment services in India. Internet Res. 2014;24(3):369-92. DOI: 10.1108/IntR-12-2012-0244.
Huang RH, Cheung CSW, Wang CML. The risks of mobile payment and regulatory responses: A Hong Kong perspective. Asian J Law Soc. 2020;7(2):325-43. DOI: 10.1017/als.2019.30.
Daragmeh A, Lentner C, Sági J. FinTech payments in the era of COVID-19: factors influencing behavioral intentions of ”Generation X” in Hungary to use mobile payment. J Behav Exp Finance. 2021;32:100574. DOI: 10.1016/j.jbef.2021.100574
Agárdi I, Alt MA. Do digital natives use mobile payment differently than digital immigrants? A comparative study between generation x and Z. Electron Com Res. 2022;2022:1-28. DOI: 10.1007/s10660-022-09537-9.
Amoroso DL, Magnier-Watanabe R. Building a research model for mobile wallet consumer adoption: the case of mobile Suica in Japan. J Theor Appl Electron Com Res. 2012;7(1):13-4. DOI: 10.4067/S0718-18762012000100008.
Yang Y, Liu Y, Li H, Yu B. Understanding perceived risks in mobile payment acceptance. Ind Manag Data Syst. 2015;115(2):253- 69. DOI: 10.1108/IMDS-08-2014-0243.
Keith MJ, Babb JS, Lowry PB, Furner CP, Abdullat A. The role of mobile-computing self-efficacy in consumer information disclosure. Inf Syst J. 2015;25(6):637-67. DOI: 10.1111/isj.12082.
Gao L, Waechter KA. Examining the role of initial trust in user adoption of mobile payment services: an empirical investigation. Inf Syst Front. 2017;19(3):525-48. DOI: 10.1007/s10796-015-9611-0.
Yang H. Young American consumers’ online privacy concerns, trust, risk, social media use, and regulatory support. J New Commun Res. 2013;5(1):1-30.
Xavier PS, Zakkariya KA. Factors predicting consumers’ continuance intention to use mobile wallets: evidence from Kerala, India. Colombo Bus J. 2021;12(1). DOI: 10.4038/cbj.v12i1.73.
Kalinić Z, Liébana-Cabanillas FJ, Muñoz-Leiva F, Marinković V. The moderating impact of gender on the acceptance of peer-to-peer mobile payment systems. Int J Bank Mark. 2019;38(1):138-58. DOI: 10.1108/IJBM-01-2019-0012.
Liébana-Cabanillas F, Molinillo S, Japutra A. Exploring the determinants of intention to use P2P mobile payment in Spain. Inf Syst Manag. 2021;38(2):165-80. DOI: 10.1080/10580530.2020.1818897.
Pham T-TT, Ho JC. The effects of product-related, personal-related factors and attractiveness of alternatives on consumer adoption of NFC-based mobile payments. Technol Soc. 2015;43:159-72. DOI: 10.1016/j.techsoc.2015.05.004.
Arvidsson N. Consumer attitudes on mobile payment services – results from a proof-of-concept test. Int J Bank Mark. 2014;32(2):150-70. DOI: 10.1108/IJBM-05-2013-0048.
Lu Y, Yang S, Chau PYK, Cao Y. Dynamics between the trust-transfer process and intention to use mobile-payment services: A cross-environment perspective. Inf Manag. 2011; 48(8):393-403. DOI: 10.1016/j.im.2011.09.006.
Baptista G, Oliveira T. A weight and a meta-analysis on mobile banking acceptance research. Comput Hum Behav. 2016;63:480-9. DOI: 10.1016/j.chb.2016.05.074.
Riquelme HE, Rios RE. The moderating effect of gender in the adoption of mobile banking. Int J Bank Mark. 2010;28(5):328-41. DOI: 10.1108/02652321011064872.
Barkhordari M, Nourollah Z, Mashayekhi H, Mashayekhi Y, Ahangar MS. Factors influencing adoption of e-payment systems: an empirical study on Iranian customers. Inf Syst E-Bus Manage. 2017;15(1):89-116. DOI: 10.1007/s10257-016-0311-1.
Wong D, Liu H, Meng-Lewis Y, Sun Y, Zhang Y. Gamified money: exploring the effectiveness of gamification in mobile payment adoption among the silver generation in China. Inf Technol People. 2021.
Shafinah K, Sahari N, Sulaiman R, Yusoff MSM, Ikram MM. Determinants of user behavior intention (BI) on mobile services: A preliminary view. Procedia Technol. 2013;11: 127-33. DOI: 10.1016/j.protcy.2013.12.171.
Tenk TT, M, Yew HC, Heang LT. E-wallet adoption: A case in Malaysia. Int J Res Com Manag Stud. 2020;2(2):216-33 (ISSN: 2582-2292).
Nguyen C, Nguyen T, Tran T. The determinants of consumer’s intention to use E-wallet: the case study of MoMo in Vietnam; 2020.
Nirmawan HM, Astiwardhani W. The effect of perceived cost, trust, usefulness, and customer value addition on intention to use of go-pay mobile payment services in small traders. J Bus Manag [review]. 2021;2(10):715-32. DOI: 10.47153/jbmr210.2392021.
Możdżyński D. Acceptance of payment systems from the perspective of merchants. Information systems in management. 2018;7:16-34. DOI: 10.22630/ISIM.2018.7.1.3.
Tripathi SN, Srivastava S, Vishnani S. Mobile wallets: achieving intention to recommend by brick-and-mortar retailers. J Mark Theor Pract. 2021;1-17.
Cruz P, Barretto Filgueiras Neto LBF, Muñoz-Gallego P, Laukkanen T. Mobile banking roll out in emerging markets:evidence from Brazil. Int J Bank Mark. 2010;28(5):342-71. DOI: 10.1108/02652321011064881.
Sripalawat J, Thongmak M, Ngramyarn A. M-Banking in Metropolitan Bangkok and a comparison with other countries. J Comput Inf Syst. 2011;51(3):67-76. DOI: 10.1080/08874417. 2011.11645487.
Humbani M, Wiese M. A cashless society for all: determining consumers’ readiness to adopt mobile payment services. J Afr Bus. 2018;19(3):409-29. DOI: 10.1080/15228916.2017.1396792.
Chong AYL, Chan FTS, Ooi KB. Predicting consumer decisions to adopt mobile commerce: Cross-country empirical examination between China and Malaysia. Decis Support Syst. 2012; 53(1):34-43. DOI: 10.1016/j.dss.2011.12.001.
Verkijika SF. Factors influencing the adoption of mobile commerce applications in Cameroon. Telemat Inform. 2018;35(6):1665-74. DOI: 10.1016/j.tele.2018.04.012.
Rattanaburi K, Vongurai R. Factors influencing actual usage of mobile shopping applications: Generation Y in Thailand. The Journal of Asian Finance, Economics and Business. 2021; 8(1):901-13..
Phonthanukitithaworn C, Sellitto C, Fong MW. A comparative study of current and potential users of mobile payment services. Sage Open. 2016;6(4):2158244016675397..
Malhotra NK. Marketing research: an applied orientation. Pearson Education; 2010.
Lavrakas PJ. Encyclopedia of survey research methods Vols. 1-0. Thousand Oaks, CA: sage publications, Inc.; 2008. DOI: 10.4135/9781412963947.
Putri AF, Handayani PW, Shihab MR. Environment factors affecting individual’s continuance usage of mobile payment technology in Indonesia. Cogent Eng. 2020;7(1):1846832. DOI: 10.1080/23311916.2020.1846832.
-
Abstract View: 0 times
PDF Download: 0 times