Main Article Content



Nanomaterials are nano-scaled materials of 1-100 nm size, having at least one dimension with novel characteristics than the same material of large size. Nanomaterials are classified into several types based on the origin, dimensions, characteristics and formation. The small size of nanomaterial provides unique physico-chemical properties that are utilized for various purposes including aerospace, automobiles, construction industries, electrical and electronic goods, sports, cosmetics, food and medicines. The discharge of nanomaterials into the environment by anthropogenic activities exists in the form of ultrafine particles in air, and as colloids in soil and water. In general, nanomaterials enter into aquatic ecosystems through the wastewater discharge from the production site, spillage during transport, as untreated effluents from industries, rainwater run-off or by strong wind. The aquatic organisms adsorb the nanomaterials through the skin or mucous lining, oral engulpment, gills, operculum or by olfactory organs. Engineered nanomaterials induce toxic effects in aquatic organisms by the induction of oxidative stress, ionoregulatory disturbances, oxygen consumption, cytotoxicity, neurotoxicity, behavioural and histological modifications, haematological, developmental and reproductive changes, immune response, and modifications in gene expressions. The present review overviewed some key aspects on the applications of nanomaterials as well as its toxic impacts in aquatic organisms. Besides its advantages, the adverse effects of nanomaterials directly or indirectly target the health of humans; therefore, it is necessary to pay special attention to prevent the intentional discharge of nanomaterials into the environment.

Nanomaterials, applications, toxicity, aquatic invertebrates, fishes.

Article Details

How to Cite
Review Article


Rana S, Kalaichelvan PT. Ecotoxicity of nanoparticles. ISRN Toxicol. 2013;1-11.

DOI: 10.1155/2013/574648.

Brune H, Ernst H, Grunwald A, Grunwald W, Hofmann H, Krug H, Janich P, Mayor M, Rathgeber W, Schmid G, Simon U, Vogel V, Wyrwa D. Nanotechnology: Assessment and perspectives. Gethmann Springer, Berlin, Germany; 2006.

DOI: 10.1007/3-540-32820-3

Porter AL, Youtie J. How interdisciplinary is nanotechnology?. J. Nanopart. Res. 2009;11: 1023-1041.

DOI: 10.1007/s11051-009-9607-0

Ajayan PM. The nano-revolution spawned by carbon. Nature. 2019;575:49-50.

DOI: 10.1038/d41586-019-02838-4

Appell D. Nanotechnology: wired for success. Nature. 2002;419:553-555.

DOI: 10.1038/419553a

Nasrollahzadeh M, Sajadi SM, Sajjadi M, Issaabadi Z. Applications of nanotechnology in daily life. An Introd. Green Nanotechnol. 2019;28:113-143.

DOI: 10.1016/b978-0-12-813586-0.00004-3

Truhaut R. Eco-toxicology-objectives, principles and perspectives. Ecotoxicol. Environ. Saf. 1977;1:151-173.

DOI: 10.1016/0147-6513(77)90033-1

Castranova V. Overview of current toxicological knowledge of engineered nanoparticles. J. Occup. Environ. Med. 2011;53:S14-S17.

DOI: 10.1097/jom.0b013e31821b1e5a

Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018;9:1050-1074. DOI: 10.3762/bjnano.9.98

Lead JR, Batley GE, Alvarez PJJ, Croteau MN, Handy RD, McLaughlin MJ, Judy JD, Schirmer K. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects - An updated review. Environ. Toxicol. Chem. 2018;37:2029-2063.

DOI: 10.1002/etc.414

Gottschalk F, Nowack B. The release of engineered nanomaterials to the environment. J. Environ. Monit. 2011;13:1145.

DOI: 10.1039/c0em00547a

Dowling AP. Development of nanotechnologies. Mater. Today. 2004;7:30-35.

DOI: 10.1016/s1369-7021(04)00628-5

Borm PJ, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdorster E. The potential risks of nanomaterials: A review carried out for ECETOC. Part. Fibre Toxicol. 2006;3:11.

DOI: 10.1186/1743-8977-3-11

Gatoo MA, Naseem S, Arfat MY, Dar AM, Qasim K, Zubair S. Physicochemical properties of nanomaterials: Implication in associated toxic manifestations. BioMed Res. Int. 2014;498420.

DOI: 10.1155/2014/498420

Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019;12:908-931.

DOI: 10.1016/j.arabjc.2017.05.011

Barbero CA. Ecotoxicity effects of nanomaterials on aquatic organisms: Nanotoxicology of materials on aquatic organisms. Joo SH (Ed.), Hershey, PA: IGI Global. 2017;330-351.

DOI: 10.4018/978-1-5225-1798-6.ch058

Kahru A, Dubourguier HC. From ecotoxicology to nanoecotoxicology. Toxicology. 2010;269:105-119.

DOI: 10.1016/j.tox.2009.08.016

Rather MA, Bhat IA, Sharma N, Sharma R. Molecular and cellular toxicology of nanomaterials with related to aquatic organisms. Cell. Mol. Toxicol. Nanoparticles. 2018;263-284.

DOI: 10.1007/978-3-319-72041-8_16

Auria-Soro C, Nesma T, Juanes-Velasco P, Landeira-Vinuela A, Fidalgo-Gomez H, Acebes-Fernandez V, Gongora R, Almendral-Parra MJ, Manzano-Roman R, Fuentes M. Interactions of nanoparticles and biosystems: Microenvironment of nanoparticles and biomolecules in nanomedicine. Nanomaterials 2019;9:1365.

DOI: 10.3390/nano9101365

Georgieva JV, Kalicharan D, Couraud P, Romero IA, Weksler B, Hoekstra D, Zuhorn, IS. Surface characteristics of nanoparticles determine their intracellular fate in and processing by human blood-brain barrier endothelial cells in vitro. Mol. Ther. 2011; 19:318-325.

DOI: 10.1038/mt.2010.236

Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009;8:543-557.

DOI: 10.1038/nmat2442

Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, Roth S, Stark WJ, Bruinink A. The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol. Lett. 2007;168:121-131.

DOI: 10.1016/j.toxlet.2006.08.019

Park W, Heo Y, Han DK. New opportunities for nanoparticles in cancer immunotherapy. Biomater. Res. 2018;22:24.

DOI: 10.1186/s40824-018-0133-y

Tiambeng TN, Roberts DS, Brown KA, Zhu Y, Chen B, Wu Z, Mitchell SD, Guardado-Alvarez TM, Jin S, Ge Y. Nanoproteomics enables proteoform-resolved analysis of low-abundance proteins in human serum. Nat. Commun. 2020;11:3903.

DOI: 10.1038/s41467-020-17643-1

Hochella MF, Mogk DW, Ranville J, Allen IC, Luther GW, Marr LC, McGrail BP, Murayama M, Qafoku NP, Rosso KM, Sahai N, Schroeder PA, Vikesland P, Westerhoff P, Yang Y. Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science. 2019;363:eaau8299.

DOI: 10.1126/science.aau8299

Westerhoff P, Atkinson A, Fortner J, Wong MS, Zimmerman J, Gardea-Torresdey J, Ranville J, Herckes P. Low risk posed by engineered and incidental nanoparticles in drinking water. Nature Nanotech. 2018;13:661-669.

DOI: 10.1038/s41565-018-0217-9

Kumar A, Kumar P, Anandan A, Fernandes TF, Ayoko GA, Biskos G. Engineered nanomaterials: Knowledge gaps in fate, exposure, toxicity, and future directions. J. Nanomater. 2014;1-16.

DOI: 10.1155/2014/130198

Strambeanu N, Demetrovici L, Dragos D. Anthropogenic sources of nanoparticles. Nanoparticles’ Promises and Risks. 2014;21-54.

DOI: 10.1007/978-3-319-11728-7_3

Wang Z, Hu T, Liang R, Wei M. Application of zero-dimensional nanomaterials in biosensing. Front. Chem. 2020;8:320.

DOI: 10.3389/fchem.2020.00320

Zhao Y, Hong H, Gong Q, Ji L. 1D Nanomaterials: Synthesis, properties, and applications. J. Nanomater. 2013;1-1.

DOI: 10.1155/2013/101836

Liu H, Haider B, Fried HR, Ju J, Bolonduro O, Raghuram V, Timko BP. Nanobiotechnology: 1D nanomaterial building blocks for cellular interfaces and hybrid tissues. Nano Res. 2018;11:5372-5399.

DOI: 10.1007/s12274-018-2189-3

Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007;2:MR17-MR172.

DOI: 10.1116/1.2815690

Butler SZ, Hollen SM, Cao L, Cui Y, Gupta JA, Gutierrez HR, Heinz TF, Hong SS, Huang J, Ismach AF, Johnston-Halperin E, Kuno M, Plashnitsa VV, Robinson RD, Ruoff RS, Salahuddin S, Shan J, Shi L, Spencer MG, Terrones M, Windl W, Goldberger JE. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano. 2013;7:2898-2926.

DOI: 10.1021/nn400280c

Zeng M, Xiao Y, Liu J, Yang K, Fu L. Exploring two-dimensional materials toward the next-generation circuits: From monomer design to assembly control. Chem. Rev. 2018;118:6236-6296.

DOI: 10.1021/acs.chemrev.7b00633

Hadef F. An introduction to nanomaterials. Environmental Chemistry for a Sustainable World. 2018;1-58.

DOI: 10.1007/978-3-319-76090-2_1

Irwin P, Zhang W, Cao Y, Fang X, Tan DQ. Mechanical and thermal properties. In: Nelson KJ (ed) Dielectric polymer nanocomposites. Springer, New York; 2010.

DOI: 10.1007/978-1-4419-1591-76

Mostofizadeh A, Li Y, Song B, Huang Y. Synthesis, properties, and applications of low-dimensional carbon-related nanomaterials. J. Nanomater. 2011;685081.

DOI: 10.1155/2011/68508

Maiti D, Tong X, Mou X, Yang K. Carbon-based nanomaterials for biomedical applications: A recent study. Front. Pharmacol. 2019;9:1401.

DOI: 10.3389/fphar.2018.01401

Pandey P, Dahiya M. A brief review on inorganic nanoparticles. J. Crit. Rev. 2016;3: 18-26.

Frattini A, Pellegri N, Nicastro D, Sanctis, OD. Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes. Mater. Chem. Phys. 2005;94:148-152.

Malhotra N, Ger TR, Uapipatanakul B, Huang JC, Chen KH, Hsiao CD. Review of copper and copper nanoparticle toxicity in fish. Nanomaterials. 2020;10:E1126.

DOI: 10.3390/nano10061126

Corr SA. Metal oxide nanoparticles. Nanoscience. 2012;180-207.

DOI: 10.1039/9781849734844-00180

Chavali MS, Nikolova MP. Metal oxide nanoparticles and their applications in nanotechnology. SN Appl. Sci. 2019;1:607. DOI: 10.1007/s42452-019-0592-3

Horn D, Rieger J. Organic nanoparticles in aqueous phase -theory, experiment, and use. Angew. Chem. Int. Ed. 2001;40:4330.

DOI:10.1002/1521 3773(20011203)40:23<4330::aid-anie4330>;2-w.

Canalle LA, Lowik D, Van-Hest JCM. Polypeptide-polymer bioconjugates. Chem. Soc. Rev. 2010;39:329-353.

DOI: 10.1039/B807871H

Duncan R, Vicent MJ, Greco F, Nicholson RI. Polymer-drug conjugates: Towards a novel approach for the treatment of endocrine-related cancer. Endocr. Relat. Cancer. 2005;12:S189-S199.

DOI: 10.1677/erc.1.01045

Bouchemal K, Briancon S, Perrier E, Fessi H, Bonnet I, Zydowicz N. Synthesis and characterization of polyurethane and poly(ether urethane) nanocapsules using a new technique of interfacial polycondensation combined to spontaneous emulsification. Int. J. Pharm. 2004;269:89-100.

DOI: 10.1016/j.ijpharm.2003.09.025

Anderson CD, Daniels ES. Emulsion polymerisation and latex applications. Rapra. Rev. Rep. 2003;14:3.

Camargo PHC, Satyanarayana KG, Wypych F. Nanocomposites: Synthesis, structure, properties and new application opportunities. Mater. Res. 2009;12:1-39.

DOI: 10.1590/S1516-14392009000100002

Singh P. Dendrimers and their applications in immunoassays and clinical diagnosis. Biotechnol. Appl. Biochem. 2007;48:1.

DOI: 10.1042/BA20070019

Kobayashi H, Kawamoto S, Jo SK, Bryant HL, Brechbiel MW, Star RA. Macromolecular MRI contrast agents with small dendrimers: Pharmacokinetic differences between sizes and cores. Bioconjug. Chem. 2003;14:388-394. DOI: 10.1021/bc025633c

Gillies ER, Frechet JM. Dendrimers and dendritic polymers in drug delivery. Drug Discov. Today. 2005;10:35-43.

DOI: 10.1016/S1359-6446(04)03276-3

Dufes C, Uchegbu IF, Schatzlein AG. Dendrimers in gene delivery. Adv. Drug Deliv. Rev. 2005;57:2177-2202.

DOI: 10.1016/j.addr.2005.09.017

Oliveira JM, Salgado AJ, Sousa N, Mano JF, Reis RL. Dendrimers and derivatives as potential therapeutic tool in regenerative medicine strategies - a review. Prog. Polym. Sci. 2010;35:1163-1194.

DOI: 10.1016/j.progpolymsci.2010.04.006

Karakhanov EA, Maximov AL, Skorkin VA, Zolotukhina AV, Smerdov AS, Tereshchenko AY. Nanocatalysis based on dendrimers. Pure Appl. Chem. 2009;81:2013.

Iqbal P, Preece JA, Mendes PM. Nanotechnology: The “top-down” and “bottom-up” approaches. Supramol. Chem. John Wiley and Sons, Ltd; 2012.

DOI: 10.1002/9780470661345.smc195

Eijkel JC, van den Berg A. The promise of nanotechnology for separation devices--from a top-down approach to nature-inspired separation devices. Electrophoresis. 2006;27: 677-685.


Nissenson AR. Bottom-up nanotechnology: the human nephron filter. Semin. Dial. 2009;22:661-664.

DOI: 10.1111/j.1525-139X.2009.00671.x

Chen X, Smith NM, Iyer KS, Raston CL. Controlling nanomaterial synthesis, chemical reactions and self assembly in dynamic thin films. Chem. Soc. Rev. 2014;43:1387-1399. DOI: 10.1039/c3cs60247h

Ganachari SV, Banapurmath NR, Salimath B, Yaradoddi JS, Shettar AS, Hunashyal AM, Venkataraman A, Patil P, Shoba H, Hiremath GB. Synthesis techniques for preparation of nanomaterials. Handbook of Ecomaterials. 2017;1-21.

DOI: 10.1007/978-3-319-48281-1_149-1.

Kleeman MJ, Schauer JJ, Cass GR. Size and composition distribution of fine particulate matter emitted from motor vehicles. Environ. Sci. Technol. 2000;34:1132-1142.

DOI: 10.1021/es981276y.

Nishiyama N. Nanomedicine: Nanocarriers shape up for long life. Nat. Nanotechnol. 2007;2:203-204.

DOI: 10.1038/nnano.2007.88.

Jiang W, Kim BY, Rutka JT, Chan WC. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 2008;3:145-150.

DOI: 10.1038/nnano.2008.30.

Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007;2:751-760.

DOI: 10.1038/nnano.2007.387.

Caldorera-moore M, Guimard N, Shi L, Roy K. Designer nanoparticles: Incorporating size, shape and triggered release into nanoscale drug carriers. Expert Opin. Drug Deliver. 2010;7: 479-495. DOI:10.1517/17425240903579971.

Sajanlal PR, Sreeprasad TS, Samal AK, Pradeep T. Anisotropic nanomaterials: Structure, growth, assembly and functions. Nano Rev. 2011;2:5883.

DOI: 10.3402/nano.v2i0.5883.

Baer DR, Amonette JE, Engelhard MH, Gaspar DJ, Karakoti AS, Kuchibhatla S, Nachimuthu P, Nurmi JT, Qiang Y, Sarathy V, Seal S, Sharma A, Tratnyek PG, Wang CM. Characterization challenges for nanomaterials. Surf. Interface Anal. 2008;40:529-537.

DOI: 10.1002/sia.2726.

Baer DR. Surface characterization of nanoparticles: Critical needs and significant challenges. J. Surf. Anal. 2011;17:163-169. DOI:10.1384/jsa.17.163.

Nowack B, Bucheli TD. Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 2007;150:5-22.

DOI: 10.1016/j.envpol.2007.06.006.

Saravanakumar A, Peng MM, Ganesh M, Jayaprakash J, Mohankumar M, Jang HT. Low-cost and eco-friendly green synthesis of silver nanoparticles using Prunus japonica (Rosaceae) leaf extract and their antibacterial, antioxidant properties. Artif. Cells Nanomed. Biotechnol. 2017;45:1165-1171.

DOI: 10.1080/21691401.2016.1203795.

Gaumet M, Vargas A, Gurny R, Delie F. Nanoparticles for drug delivery: The need for precision in reporting particle size parameters. Eur. J. Pharm. Biopharm. 2008;69:1-9.

DOI: 10.1016/j.ejpb.2007.08.001.

Hampp E, Botah R, Odusanya OS, Anuku N, Malatesta KA, Soboyejo WO. Biosynthesis and adhesion of gold nanoparticles for breast cancer detection and treatment. J. Mater. Res. 2012;27:2891-2901.

DOI: 10.1557/jmr.2012.317.

Tiwari M, Thakar MB, Jagani HV, Narayanan K, Rao Venkata J. Biosynthesis and wound healing activity of copper nanoparticles. IET Nanobiotechnol. 2014;8:230-237.

DOI: 10.1049/iet-nbt.2013.0052.

Dhas TS, Kumar VG, Karthick V, Vasanth K, Singaravelu G, Govindaraju K. Effect of biosynthesized gold nanoparticles by Sargassum swartzii in alloxan induced diabetic rats. Enzyme Microb. Tech. 2016;95:100-106. DOI: 10.1016/j.enzmictec.2016.09.003.

Kumar P, Robins A, Vardoulakis S, Britter R. A review of the characteristics of nanoparticles in the urban atmosphere and the prospects for developing regulatory controls mode particles in an urban street canyon. Atmos. Environ. 2010;44:5035-5052.

DOI: 10.1016/j.atmosenv.2010.08.016.

Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005;113:823-839. DOI: 10.1289/ehp.7339.

Valentini L, Lopez-manchado MA. Rubber nanocomposites for extreme environments: Critics and counterintuitive solutions. Front. Mater. 2018;5:49.

DOI: 10.3389/fmats.2018.00049.

Coleman JN, Khan U, Gunko YK. Mechanical reinforcement of polymers using carbon nanotubes. Adv. Mater. 2006;18:689-706.

DOI: 10.1002/adma.200501851.

Edwards E, Brantley C, Ruffin PB. Overview of nanotechnology in military and aerospace applications. Nanotech. Commercial. 2017; 133-176.

DOI: 10.1002/9781119371762.ch5.

Felix DG, Siva Kumar G. Nanoparticles in automobile tires. IOSR J. Mech. Civ. Eng. 2014;11:7-11.

DOI: 10.9790/1684-11410711.

Mathew J, Joy J, George SC. Potential applications of nanotechnology in transportation: A review. J. King Saud Univ. Sci; 2018.

DOI: 10.1016/j.jksus.2018.03.015.

Ge Z, Gao Z. Applications of nanotechnology and nanomaterials in construction. First International Conferernce on Construction in Developing Countries. 2008;235-240.

Wang F, Matsuda K. Applications of carbon nanotubes in solar cells. In: Nakashima N. (eds). Nanocarbons for energy conversion: Supramolecular approaches. Nanostructure Science and Technology. Springer, Cham; 2019.

DOI: 10.1007/978-3-319-92917-0_20.

Mohajerani A, Burnett L, Smith JV, Kurmus H, Milas J, Arulrajah A, Horpibulsuk S, Abdul Kadir A. Nanoparticles in construction materials and other applications, and implications of nanoparticle use. Materials. 2019;12:3052.

DOI: 10.3390/ma12193052.

Bai Y, Mora-sero I, De Angelis F, Bisquert J, Wang P. Titanium dioxide nanomaterials for photovoltaic applications. Chem. Rev. 2014;114:10095-10130.

DOI: 10.1021/cr400606n.

Amer AA, El-sokkary TM, Abdullah NI. Thermal durability of OPC pastes admixed with nano iron oxide. HBRC Journal. 2015;11:299-305.

DOI: 10.1016/j.hbrcj.2014.04.002.

Tan H, Santbergen R, Smets AHM, Zeman M. Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles. Nano Lett. 2012;12:4070-4076. DOI: 10.1021/nl301521z.

Lee J, Mahendra S, Alvarez PJJ. Nanomaterials in the construction industry: A review of their applications and environmental health and safety considerations. ACS Nano. 2010;4: 3580-3590.

DOI: 10.1021/nn100866w.

Matsui I. Nanoparticles for electronic device applications: A brief review. J. Chem. Eng. Jpn. 2005;38:535-546.

DOI: 10.1252/jcej.38.535.

Whatmore RW. Nanotechnology - what is it? Should we be worried? Occup. Med. 2006; 56:295-299.

DOI: 10.1093/occmed/kql050.

Burgess D. ZnO nanowire LEDs have UV output. Photonics Spectra. 2006;135-136.

Nagpure SC, Bhushan B. Nanomaterials for electrical energy storage devices. In: Bhushan B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht; 2016.

DOI: 10.1007/978-94-017-9780-1_58.

Cibo M, Sator A, Kazlagic A, Omanovic-miklicanin E. Application and impact of nanotechnology in sport. In: Brka M, Omanovic-miklicanin E, Karic L, Falan V, Toroman A. (eds) 30th Scientific-experts Conference of Agriculture and Food Industry. AgriConf 2019. IFMBE Proceedings, Springer, Cham. 2020;78.

DOI: 10.1007/978-3-030-40049-1_44.

Mahmud R, Nabi F. Application of nanotechnology in the field of textile. J. Polym. Textile Eng. 2017;4:1-6.

DOI: 10.9790/019X-04010106.

Guterres SS, Alves MP, Pohlmann AR. Polymeric nanoparticles, nanospheres and nanocapsules for cutaneous applications. Drug Target Insights. 2007;2:148-157.

DOI: 10.1177/117739280700200002.

Chiari-andreo BG, Almeida-cincotto MGJ, De Oshiro JA, Taniguchi CYY, Chiavacci LA, Isaac VLB. Nanoparticles for cosmetic use and its application. Nanoparticles in Pharmacotherapy. 2019;113-146.

DOI: 10.1016/b978-0-12-816504-1.00013-2.

Singh G, Stephan C, Westerhoff P, Carlander D, Duncan TV. Measurement methods to detect, characterize and quantify engineered nanomaterials in foods. Compr. Rev. Food Sci. F. 2014;13:693-704.

DOI: 10.1111/1541-4337.12078.

Dekkers S, Krystek P, Peters RJ, Lankveld DP, Bokkers BG, Van Hoeven-arentzen PH, Bouwmeester H, Oomen AG. Presence and risks of nanosilica in food products. Nanotoxicology 2011;5:393-405.

DOI: 10.3109/17435390.2010.519836.

Peters RJB, Van Bemmel G, Herrera-rivera Z, Helsper HPFG, Marvin HJP, Weigel S, Tromp, PC, Oomen AG, Rietveld AG, Bouwmeester H. Characterization of titanium dioxide nanoparticles in food products: Analytical methods to define nanoparticles. J. Agric. Food Chem. 2014;62:6285-6293.

DOI: 10.1021/jf5011885.

Espitia PJP, Otoni CG, Soares NFF. Zinc oxide nanoparticles for food packaging applications. Antimicrobial Food Packaging. 2016;425-431. DOI: 10.1016/b978-0-12-800723-5.00034-6.

Martinez-abad A, Lagaron JM, Ocio MJ. Development and characterization of silver-based antimicrobial ethylene-vinyl alcohol copolymer (EVOH) films for food-packaging applications. J. Agric. Food Chem. 2012;60:5350-5359.

DOI: 10.1021/jf300334z.

Salata O. Applications of nanoparticles in biology and medicine. J. Nanobiotechnol. 2004;2:3.

DOI: 10.1186/1477-3155-2-3

Suri SS, Fenniri H, Singh B. Nanotechnology-based drug delivery systems. J. Occup. Med. Toxicol. 2007;2:16.

DOI: 10.1186/1745-6673-2-16.

Kipp JE. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int. J. Pharm. 2004;284:109-122.

DOI: 10.1016/j.ijpharm.2004.07.019.

Chen AA, Derfus AM, Khetani SR, Bhatia SN. Quantum dots to monitor RNAi delivery and improve gene silencing. Nucleic Acids Res. 2005;33:e190.

DOI: 10.1093/nar/gni188.

Yang H. Nanoparticle-mediated brain-specific drug delivery, imaging and diagnosis. Pharm. Res. 2010;27:1759-1771.

DOI: 10.1007/s11095-010-0141-7.

Labhasetwar V. Nanotechnology for drug and gene therapy: The importance of understanding molecular mechanisms of delivery. Curr. Opin. Biotech. 2005;16:674-680.

DOI: 10.1016/j.copbio.2005.10.009.

Wolfbeis OS. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 2015;44:4743-4768. DOI:10.1039/C4CS00392F

Yang H, Li H, Jiang X. Detection of foodborne pathogens using bioconjugated nanomaterials. Microfluid. Nanofluidics. 2008;5:571-583. DOI: 10.1007/s10404-008-0302-8.

Kaittanis C, Santra S, Perez JM. Emerging nanotechnology-based strategies for the identification of microbial pathogenesis. Adv. Drug Deliv. Rev. 2010;62:408-423.

DOI: 10.1016/j.addr.2009.11.013.

Wang H, Yang R, Yang L, Tan W. Nucleic acid conjugated nanomaterials for enhanced molecular recognition. ACS Nano. 2009;3:2451-2460.

DOI: 10.1021/nn9006303.

Hasan A, Morshed M, Memic A, Hassan S, Webster T, Marei H. Nanoparticles in tissue engineering: Applications, challenges and prospects. Int. J. Nanomedicine. 2018;13:5637-5655.

DOI: 10.2147/ijn.s153758.

Breunig M, Bauer S, Goepferich A. Polymers and nanoparticles: Intelligent tools for intracellular targeting? Eur. J. Pharm. Biopharm. 2008;68:112-128.

DOI: 10.1016/j.ejpb.2007.06.010.

Wang EC, Wang AZ. Nanoparticles and their applications in cell and molecular biology. Integr. Biol. 2014;6:9-26.

DOI: 10.1039/c3ib40165k.

Lead JR, Wilkinson KJ. Environmental colloids: Current knowledge and future developments. In: Wilkinson KL, Lead JR, eds, Environmental Colloids: Behaviour, Structure and Characterization. John Wiley, Chichester, UK. 2006;1-15.

Kabir E, Kumar V, Kim KH, Yip ACK, Sohn JR. Environmental impacts of nanomaterials. J. Environ. Manag. 2018;225:261-271.

DOI: 10.1016/j.jenvman.2018.07.087.

Biswas P, Wu P. Nanoparticles and the environment. J. Air Waste Manag. Assoc. 2005;55:708-746.

DOI: 10.1080/10473289.2005.10464656.

Selck H, Handy RD, Fernandes TF, Klaine SJ, Petersen EJ. Nanomaterials in the aquatic environment: A European Union-United States perspective on the status of ecotoxicity testing, research priorities and challenges ahead. Environ. Toxicol. Chem. 2016;35:1055-1067. DOI: 10.1002/etc.3385.

Handy RD, Al-bairuty G, Al-jubory A, Ramsden CS, Boyle D, Shaw BJ, Henry TB. Effects of manufactured nanomaterials on fishes: A target organ and body systems physiology approach. J. Fish Biol. 2011; 79:821-853.

DOI: 10.1111/j.1095-8649.2011.03080.x.

Doane T, Burda C. Nanoparticle mediated non-covalent drug delivery. Adv. Drug Deliv. Rev. 2013;65:607-621.

DOI: 10.1016/j.addr.2012.05.012.

Hendrickson OD, Safenkova IV, Zherdev AV, Dzantiev BB, Popov VO. Methods of detection and identification of manufactured nanoparticles. Biophysics. 2011;56:961-986.

DOI: 10.1134/s0006350911060066

Nafisi S, Maibach HI. Skin penetration of nanoparticles. Emerging Nanotechnologies in Immunology. 2018;47-88.

DOI: 10.1016/b978-0-323-40016-9.00003-8

Bergin IL, Witzmann FA. Nanoparticle toxicity by the gastrointestinal route: Evidence and knowledge gaps. Int J Biomed Nanosci Nanotech. 2013;3.

DOI: 10.1504/IJBNN.2013.054515

Handy RD, Henry TB, Scown TM, Johnston BD, Tyler CR. Manufactured nanoparticles: Their uptake and effects on fish - a mechanistic analysis. Ecotoxicology. 2008; 17:396-409.

DOI: 10.1007/s10646-008-0205-1

Ye H, Shen Z, Yu L, Wei M, Li Y. Manipulating nanoparticle transport within blood flow through external forces: An exemplar of mechanics in nanomedicine. Proceedings. Mathematical, Physical, and Engineering Sciences. 2018;474:20170845.

DOI: 10.1098/rspa.2017.0845

Mattsson K, Johnson EV, Malmendal A, Linse S, Hansson LA, Cedervall T. Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Sci Rep. 2017;7:11452.

DOI: 10.1038/s41598-017-10813-0

Elsaesser A, Howard CV. Toxicology of nanoparticles. Adv. Drug Deliv. Rev. 2012;64: 129-137.

DOI: 10.1016/j.addr.2011.09.001

Migliore L, Uboldi C, Di Bucchianico S, Coppede F. Nanomaterials and neurodegeneration. Environ Mol Mutagen. 2015;56:149-170.

DOI: 10.1002/em.21931

Sarasamma S, Audira G, Samikannu P, Juniardi S, Siregar P, Hao E, et al. Behavioral impairments and oxidative stress in the brain, muscle, and gill caused by chronic exposure of C70 nanoparticles on adult zebrafish. Int J Mol Sci. 2019;20:5795.

DOI: 10.3390/ijms20225795

Sumi N, Chitra KC. Fullerene C60 nanomaterial induced oxidative imbalance in gonads of the freshwater fish, Anabas testudineus (Bloch, 1792). Aquat Toxicol. 2019;210:196-206.

DOI: 10.1016/j.aquatox.2019.03.003

Sumi N, Chitra KC. Impact of fullerene C60 on behavioural and haematological changes in the freshwater fish, Anabas testudineus (Bloch, 1792). Appl. Nanosci. 2019;9:2147-2167.

DOI: 10.1007/s13204-019-01041-1.

Simon-Deckers A, Loo S, Mayne-L’hermite M, Herlin-Boime N, Menguy N, Reynaud C, et al. Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ. Sci. Technol. 2009;43: 8423-8429.

DOI: 10.1021/es9016975

Sumi N, Chitra KC. Oxidative stress in muscle tissue of the freshwater fish, Pseudetroplus maculatus (Bloch, 1795): A toxic response from exposure to fullerene (C60) nanoparticles. Asian Fish Sci. 2017;30:206-214.

Yuan X, Zhang X, Sun L, Wei Y, Wei X. Cellular toxicity and immunological effects of carbon-based nanomaterials. Part Fibre Toxicol. 2019;16:18.

DOI: 10.1186/s12989-019-0299-z

Vidya PV, George A, Chitra KC. An in vitro study on the induction of micronuclei and other nuclear anomalies in peripheral blood lymphocyte culture by metal oxide nanoparticles. Int. J. Adv. Res. Biol. Sci. 2017; 4(1):1-8.

Verma A, Stellacci F. Effect of surface properties on nanoparticle-cell interactions. Small. 2010;6:12-21.

DOI: 10.1002/smll.200901158

Ispas C, Andreescu D, Patel A, Goia DV, Andreescu S, Wallace KN. Toxicity and developmental defects of different sizes and shape nickel nanoparticles in zebrafish. Environ. Sci. Technol. 2009;43:6349-6356.

DOI: 10.1021/es9010543

Lovern SB, Klaper R. Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environ. Toxicol Chem. 2006;25:1132.

DOI: 10.1897/05-278r.1

Lovern SB, Strickler JR, Klaper R. Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C60, and C60HxC70Hx). Environ Sci Technol. 2007;41:4465-4470.

DOI: 10.1021/es062146p

Roberts AP, Mount AS, Seda B, Souther J, Qiao R, Lin S, et al. In vivo biomodification of lipid-coated carbon nanotubes by Daphnia magna. Environ Sci Technol. 2007;41: 3025-3029.

DOI: 10.1021/es062572a

Kennedy AJ, Hull MS, Steevens JA, Dontsova KM, Chappell MA, Gunter JC, et al. Factors influencing the partitioning and toxicity of nanotubes in the aquatic environment. Environ Toxicol Chem. 2008;27:1932-1941. DOI: 10.1897/07-624.1

Wiench K, Wohlleben W, Hisgen V, Radke K, Salinas E, Zok S, et al. Acute and chronic effects of nano- and non-nano-scale TiO(2) and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna. Chemosphere. 2009;76:1356-1365.

DOI: 10.1016/j.chemosphere.2009.06.025

Yang XY, Edelmann RE, Oris JT. Suspended C60 nanoparticles protect against short-term UV and fluoranthene photo-induced toxicity, but cause long-term cellular damage in Daphnia magna. Aquat. Toxicol. 2010;100:202-210.

DOI: 10.1016/j.aquatox.2009.08.011

Zhu X, Chang Y, Chen Y. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere. 2010;78:209-215.

DOI: 10.1016/j.chemosphere.2009.11.013

Brausch KA, Anderson TA, Smith PN, Maul JD. Effects of functionalized fullerenes on bifenthrin and tribufos toxicity to Daphnia magna: Survival, reproduction, and growth rate. Environ Toxicol Chem. 2010;29: 2600-2606.

DOI: 10.1002/etc.318

Brausch KA, Anderson TA, Smith PN, Maul JD. The effect of fullerenes and functionalized fullerenes on Daphnia magna phototaxis and swimming behavior. Environ. Toxicol. Chem. 201130:878-884.

DOI: 10.1002/etc.442

Poynton HC, Lazorchak JM, Impellitteri CA, Smith ME, Rogers K, Patra M, et al. Differential gene expression in Daphnia magna suggests distinct modes of action and bioavailability for ZnO nanoparticles and Zn ions. Environ. Sci. Technol. 2011;45:762-768.

DOI: 10.1021/es102501z.

Zhao CM, Wang WX. Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna. Environ. Toxicol Chem. 2011.30:885-892.

DOI: 10.1002/etc.451.

Gaiser BK, Biswas A, Rosenkranz P, Jepson MA, Lead JR, Stone V, et al. Effects of silver and cerium dioxide micro- and nano-sized particles on Daphnia magna. J. Environ. Monit. 2011;13:1227-1235.

DOI: 10.1039/c1em10060b

Fan W, Wang X, Cui M, Zhang D, Zhang Y, Yu T, et al. Differential oxidative stress of octahedral and cubic Cu2O micro/nanocrystals to Daphnia magna. Environ Sci Technol. 2012;46:10255-10262.

DOI: 10.1021/es3011578

Yu ZG, Wang WX. Influences of ambient carbon nanotubes on toxic metals accumulation in Daphnia magna. Water Res. 2013;47: 4179-4187.

DOI: 10.1016/j.watres.2013.01.059

Lopes S, Ribeiro F, Wojnarowicz J, Lojkowski W, Jurkschat K, Crossley A, et al. Zinc oxide nanoparticles toxicity to Daphnia magna: Size-dependent effects and dissolution. Environ. Toxicol. Chem. 2014;33:190-198.

DOI: 10.1002/etc.2413

Pakrashi S, Dalai S, Chandrasekaran N, Mukherjee A. Trophic transfer potential of aluminium oxide nanoparticles using representative primary producer (Chlorella ellipsoides) and a primary consumer (Ceriodaphnia dubia). Aquat Toxicol. 2014;152:74-81.

DOI: 10.1016/j.aquatox.2014.03.024

Struzynski W, Dąbrowska-Bouta B, Grygorowicz T, Zieminska E, Struzynska L. Markers of oxidative stress in hepatopancreas of crayfish (Orconectes limosus, raf) experimentally exposed to nanosilver. Environ. Toxicol. 2014;29:1283-1291.

DOI: 10.1002/tox.21859

Dominguez GA, Lohse SE, Torelli MD, Murphy CJ, Hamers RJ, Orr G, et al. Effects of charge and surface ligand properties of nanoparticles on oxidative stress and gene expression within the gut of Daphnia magna. Aquat Toxicol. 2015;162:1-9.

DOI: 10.1016/j.aquatox.2015.02.015

Stanley JK, Laird JG, Kennedy AJ, Steevens JA. Sublethal effects of multiwalled carbon nanotube exposure in the invertebrate Daphnia magna. Environ. Toxicol. Chem. 2016;35:200-204.

DOI: 10.1002/etc.3184

Puerari RC, da Costa CH, Vicentini DS, Fuzinatto CF, Melegari SP, Schmidt EC, et al. Synthesis, characterization and toxicological evaluation of Cr₂O₃ nanoparticles using Daphnia magna and Aliivibrio fischeri. Ecotoxicol. Environ. Saf. 2016;128:36-43.

DOI: 10.1016/j.ecoenv.2016.02.011

Mattsson K, Adolfsson K, Ekvall MT, Borgstrom MT, Linse S, Hansson LA, et al. Translocation of 40 nm diameter nanowires through the intestinal epithelium of Daphnia magna. Nanotoxicology. 2016;10:1160- 1167.

DOI: 10.1080/17435390.2016.1189615

Cano AM, Maul JD, Saed M, Shah SA, Green MJ, Canas-Carrell JE. Bioaccumulation, stress, and swimming impairment in Daphnia magna exposed to multiwalled carbon nanotubes, graphene, and graphene oxide. Environ. Toxicol. Chem. 2017;36:2199-2204.

DOI: 10.1002/etc.3754

Gonzalez-Andres V, Diez-Ortiz M, Delpivo C, Janer G, Fritzsche A, Vazquez-Campos S. Acute ecotoxicity of coated colloidal goethite nanoparticles on Daphnia magna: Evaluating the influence of exposure approaches. Sci. Total Environ. 2017;609:172-179.

DOI: 10.1016/j.scitotenv.2017.07.047

Hou J, Zhou Y, Wang C, Li S, Wang, X. Toxic effects and molecular mechanism of different types of silver nanoparticles to the aquatic crustacean Daphnia magna. Environ. Sci. Technol. 2017;51:12868-12878.

DOI: 10.1021/acs.est.7b03918

Dominguez GA, Torelli MD, Buchman JT, Haynes CL, Hamers RJ, Klaper RD. Size dependent oxidative stress response of the gut of Daphnia magna to functionalized nanodiamond particles Environ Res. 2018;167:267-275.

DOI: 10.1016/j.envres.2018.07.024

Wang P, Huang B, Chen Z, Lv X, Qian W, Zhu X, et al. Behavioural and chronic toxicity of fullerene to Daphnia magna: Mechanisms revealed by transcriptomic analysis. Environ. Pollut. 2019;255:113181.

DOI: 10.1016/j.envpol.2019.113181

Villa S, Maggioni D, Hamza H, Nica VD, Magni S, Morosetti B, et al. Natural molecule coatings modify the fate of cerium dioxide nanoparticles in water and their ecotoxicity to Daphnia magna. Environ. Pollut. 2020;257:113597.

DOI: 10.1016/j.envpol.2019.113597

Nogueira DJ, Vaz VP, Neto OS, da Silva MLN, Simioni C, Ouriques LC, et al. Crystalline phase-dependent toxicity of aluminum oxide nanoparticles toward Daphnia magna and ecological risk assessment. Environ. Res. 2020;182:108987.

DOI: 10.1016/j.envres.2019.108987

Canesi L, Ciacci C, Betti M, Fabbri R, Canonico B, Fantinati A, et al. Immunotoxicity of carbon black nanoparticles to blue mussel hemocytes. Environ. Int. 2008;34:1114-1119.

DOI: 10.1016/j.envint.2008.04.002

Musee N, Oberholster PJ, Sikhwivhilu L, Botha AM. The effects of engineered nanoparticles on survival, reproduction, and behaviour of freshwater snail, Physa acuta (Draparnaud, 1805). Chemosphere. 2010;81: 1196-1203.

DOI: 10.1016/j.chemosphere.2010.09.040

Ringwood AH, McCarthy M, Bates TC, Carroll DL. The effects of silver nanoparticles on oyster embryos. Mar. Environ. Res. 2010;69:S49-S51.

DOI: 10.1016/j.marenvres.2009.10.011

Gomes T, Pinheiro JP, Cancio I, Pereira CG, Cardoso C, Bebianno MJ. Effects of copper nanoparticles exposure in the mussel Mytilus galloprovincialis. Environ. Sci. Technol. 2011;45:9356-9362.

DOI: 10.1021/es200955s

Ciacci C, Canonico B, Bilanicova D, Fabbri R, Cortese K, Gallo G, et al. Immunomodulation by different types of N-oxides in the hemocytes of the marine bivalve Mytilus galloprovincialis. PLoS One. 2012;7:e36937.

DOI: 10.1371/journal.pone.0036937

Ali D, Alarifi S, Kumar S, Ahamed M, Siddiqui MA. Oxidative stress and genotoxic effect of zinc oxide nanoparticles in freshwater snail Lymnaea luteola L. Aquat. Toxicol. 2012;124-125:83-90.

DOI: 10.1016/j.aquatox.2012.07.012

Barmo C, Ciacci C, Canonico B, Fabbri R, Cortese K, Balbi T, et al. In vivo effects of n-TiO2 on digestive gland and immune function of the marine bivalve Mytilus galloprovincialis. Aquat. Toxicol. 2013;132-133:9-18.

DOI: 10.1016/j.aquatox.2013.01.014

Gagne F, Auclair J, Fortier M, Bruneau A, Fournier M, Turcotte P, et al. Bioavailability and immunotoxicity of silver nanoparticles to the freshwater mussel Elliptio complanata. J. Toxicol. Environ. Health A. 2013;76:767-777.

DOI: 10.1080/15287394.2013.818602

Trevisan R, Delapedra G, Mello DF, Arl M, Schmidt EC, Meder F, et al. Gills are an initial target of zinc oxide nanoparticles in oysters Crassostrea gigas, leading to mitochondrial disruption and oxidative stress. Aquat. Toxicol. 2014;153:27-38.

DOI: 10.1016/j.aquatox.2014.03.018

Fahmy SR, Abdel-Ghaffar F, Bakry FA, Sayed DA. Ecotoxicological effect of sublethal exposure to zinc oxide nanoparticles on freshwater snail Biomphalaria alexandrina. Arch. Environ. Contam. Toxicol. 2014;67: 192-202.

DOI: 10.1007/s00244-014-0020-z

Ali D, Ahmed M, Alarifi S, Ali H. Ecotoxicity of single-wall carbon nanotubes to freshwater snail Lymnaea luteola L.: Impacts on oxidative stress and genotoxicity. Environ. Toxicol. 2015; 30:674-682.

DOI: 10.1002/tox.21945.

Falfushynska H, Gnatyshyna L, Yurchak I, Sokolova I, Stoliar O. The effects of zinc nanooxide on cellular stress responses of the freshwater mussels Unio tumidus are modulated by elevated temperature and organic pollutants. Aquat Toxicol. 2015;162:82-93.

DOI: 10.1016/j.aquatox.2015.03.006.

Katsumiti A, Gilliland D, Arostegui I, Cajaraville MP. Mechanisms of toxicity of Agnanoparticles in comparison to bulk and ionic Ag on mussel hemocytes and gill cells. PLoS One. 2015;10:e0129039.

DOI: 10.1371/journal.pone.0129039.

Girardello F, Leite CC, Villela IV, Machado MS, Juchem ALM, Roesch-Ely M et al. Titanium dioxide nanoparticles induce genotoxicity but not mutagenicity in golden mussel Limnoperna fortunei. Aquat. Toxicol. 2016;170:223-228.

DOI: 10.1016/j.aquatox.2015.11.030.

Girardello F, Leite CC, Branco CS, Roesch-Ely M, Fernandes AN, Salvador M, Henriques JAP. Antioxidant defences and haemocyte internalization in Limnoperna fortunei exposed to TiO2 nanoparticles. Aquat. Toxicol. 2016; 176:190-196.

DOI: 10.1016/j.aquatox.2016.04.024.

Huang X, Lin D, Ning K, Sui Y, Hu M, Lu W, Wang Y. Hemocyte responses of the thick shell mussel Mytilus coruscus exposed to nano-TiO2 and seawater acidification. Aquat. Toxicol. 2016;180:1-10.

DOI: 10.1016/j.aquatox.2016.09.008.

Young A, Protheroe A, Lukowiak K. Silver nanoparticles alter learning and memory formation in an aquatic organism, Lymnaea stagnalis. Environ Pollut. 2017;225:403-411.

DOI: 10.1016/j.envpol.2017.02.067.

Balbi T, Camisassi G, Montagna M, Fabbri R, Franzellitti S, Carbone C, Dawson K, Canesi L. Impact of cationic polystyrene nanoparticles (PS-NH2) on early embryo development of Mytilus galloprovincialis: Effects on shell formation. Chemosphere. 2017;186:1-9.

DOI: 10.1016/j.chemosphere.2017.07.120.

Koehle-Divo V, Cossu-Leguille C, Pain-Devin, S, Simonin C, Bertrand C, Sohm B, et al. Genotoxicity and physiological effects of CeO2 NPs on a freshwater bivalve (Corbicula fluminea). Aquat Toxicol. 2018;198:141-148.


Khan B, Adeleye AS, Burgess RM, Smolowitz R, Russo SM, Ho KT. A 72-h exposure study with eastern oysters (Crassostrea virginica) and the nanomaterial graphene oxide. Environ. Toxicol. Chem. 2019;38:820-830.

DOI: 10.1002/etc.4367.

Ale A, Liberatori G, Vannuccini ML, Bergami, E, Ancora S, Mariotti G, et al. Exposure to a nanosilver-enabled consumer product results in similar accumulation and toxicity of silver nanoparticles in the marine mussel Mytilus galloprovincialis. Aquat. Toxicol. 2019;211: 46-56.

DOI: 10.1016/j.aquatox.2019.03.018.

Wang T, Huang X, Jiang X, Hu M, Huang W, Wang Y. Differential in vivo hemocyte responses to nano titanium dioxide in mussels: Effects of particle size. Aquat. Toxicol. 2019; 212:28-36.

DOI: 10.1016/j.aquatox.2019.04.012.

Abdel-Halim KY, Osman SR, Abdou GY. In vivo evaluation of oxidative stress and biochemical alteration as biomarkers in glass clover snail, Monacha cartusiana exposed to zinc oxide nanoparticles. Environ Pollut. 2020;257:113120.


Zhu X, Zhu L, Li Y, Duan Z, Chen W, Alvarez PJJ. Developmental toxicity in zebrafish (Danio rerio) embryos after exposure to manufactured nanomaterials: Buckminsterfullerene aggregates (nC60) and fullerol. Environ. Toxicol. Chem. 2007;26:976.

DOI: 10.1897/06-583.1.

Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, Barber DS. Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol. 2007;41:8178-8186.

DOI: 10.1021/es071235e.

Asharani PV, Wu YL, Gong Z, Valiyaveettil, S. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology. 2008;19:255102.

DOI: 10.1088/0957-4484/19/25/255102.

Yeo MK, Kang M. Effects of nanometer sized silver materials on biological toxicity during zebrafish embryogenesis. Bull. Korean Chem. Soc. 2008;29:1179-1184.

DOI: 10.5012/bkcs.2008.29.6.1179.

Griffitt RJ, Hyndman K, Denslow ND, Barber DS. Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol. Sci. 2009;107:404-415.

DOI: 10.1093/toxsci/kfn256.

Dumitrescu E, Karunaratne DP, Prochask MK, Liu X, Wallace KN, Andreescu S. Developmental toxicity of glycine-coated silica nanoparticles in embryonic zebrafish. Environ Pollut. 2017;229:439-447.


Boran H, Saffak S. Comparison of dissolved nickel and nickel nanoparticles toxicity in larval zebrafish in terms of gene expression and DNA damage. Arch. Environ. Contam. Toxicol. 2017.74:193-202.

DOI: 10.1007/s00244-017-0468-8.

Kaur J, Khatri M, Puri S. Toxicological evaluation of metal oxide nanoparticles and mixed exposures at low doses using zebra fish and THP1 cell line. Environ. Toxicol; 2018.

DOI: 10.1002/tox.22692.

Ye N, Wang Z, Wang S, Peijnenburg WJGM. Toxicity of mixtures of zinc oxide and graphene oxide nanoparticles to aquatic organisms of different trophic level: Particles outperform dissolved ions. Nanotoxicology 2018;12:423-438.

DOI: 10.1080/17435390.2018.1458342.

Duan J, Liang S, Yu Y, Li Y, Wang L, Wu Z, et al. Inflammation–coagulation response and thrombotic effects induced by silica nanoparticles in zebrafish embryos. Nanotoxicology 2018;12:470-484.

DOI: 10.1080/17435390.2018.1461267.

Pitt JA, Kozal JS, Jayasundara N, Massarsky A, Trevisan R, Geitner N, et al. Uptake, tissue distribution, and toxicity of polystyrene nanoparticles in developing zebrafish (Danio rerio). Aquat. Toxicol. 2018;194:185-194.

DOI: 10.1016/j.aquatox.2017.11.017.

Patibandla S, Zhang Y, Tohari AM, Gu P, Reilly J, Chen Y, Shu X. Comparative analysis of the toxicity of gold nanoparticles in zebrafish. J. Appl. Toxicol. 2018;38:1153-1161.

DOI: 10.1002/jat.3628.

Tang T, Zhang Z, Zhu X. Toxic Effects of TiO2 NPs on zebrafish. Int. J. Environ. Res. Pub. Health 2019; 16:523.

DOI: 10.3390/ijerph16040523.

Ismail T, Lee HK, Kim C, Kim Y, Lee H, Kim JH, et al. Comparative analysis of the developmental toxicity in Xenopus laevis and Danio rerio induced by Al2O3 nanoparticle exposure. Environ. Toxicol. Chem. 2019; 38:2672-2681.

DOI: 10.1002/etc.4584.

Almeida AR, Salimian M, Ferro M, Marques PA, Goncalves G, Titus E, Domingues I. Biochemical and behavioral responses of zebrafish embryos to magnetic graphene/nickel nanocomposites. Ecotoxicol Environ Saf. 2019;186:109760.

DOI: 10.1016/j.ecoenv.2019.109760.

Matos B, Martins M, Samamed AC, Sousa D, Ferreira I, Diniz MS. Toxicity evaluation of quantum dots (ZnS and CdS) singly and combined in zebrafish (Danio rerio). Int J. Environ. Res. Pub. Health. 2019;17:232.


Pereira AC, Goncalves BB, Brito RDS, Vieira LG, Lima ECO, Rocha TL. Comparative developmental toxicity of iron oxide nanoparticles and ferric chloride to zebrafish (Danio rerio) after static and semi-static exposure. Chemosphere. 2020;254:126792.

DOI: 10.1016/j.chemosphere.2020.126792.

Hlavkova D, Caloudova H, Palikova P, Kopel P, Plhalova L, Beklova M, Havelkova B. Effect of gold nanoparticles and ions exposure on the aquatic organisms. Bull. Environ. Contam. Toxicol; 2020.

DOI: 10.1007/s00128-020-02988-6.

Li X, Dang J, Li Y, Wang L, Li N, Liu K, Jin M. Developmental neurotoxicity fingerprint of silica nanoparticles at environmentally relevant level on larval zebrafish using a neurobehavioral-phenomics-based biological warning method. Sci. Total Environ. 2020;752: 141878.

DOI: 10.1016/j.scitotenv.2020.141878.

Wei J, Liu J, Liang S, Sun M, Duan J. Low-dose exposure of silica nanoparticles induces neurotoxicity via neuroactive ligand-receptor interaction signaling pathway in zebrafish embryos. Int. J. Nanomedicine. 2020;15:4407-4415.

DOI: 10.2147/IJN.S254480.

Boran H, Saffak S. Transcriptome alterations and genotoxic influences in zebrafish larvae after exposure to dissolved aluminum and aluminum oxide nanoparticles. Toxicol Mech. Methods. 2020;30:546-554.

DOI: 10.1080/15376516.2020.1786759.

Xiong G, Deng Y, Liao X, Zhang J, Cheng B, Cao Z, Lu H. Graphene oxide nanoparticles induce hepatic dysfunction through the regulation of innate immune signaling in zebrafish (Danio rerio). Nanotoxicology 2020; 14:667-682.

DOI: 10.1080/17435390.2020.1735552.

Bao S, Tang W, Fang T. Sex-dependent and organ-specific toxicity of silver nanoparticles in livers and intestines of adult zebrafish. Chemosphere 2020;249:126172.

DOI: 10.1016/j.chemosphere.2020.126172.

Chen Y, Zhu W, Shu F, Fan Y, Yang N, Wu T, et al. Nd2O3 nanoparticles induce toxicity and cardiac/cerebrovascular abnormality in zebrafish embryos via the apoptosis pathway. Int. J. Nanomedicine. 2020;15:387-400.

DOI: 10.2147/IJN.S220785.

Priya KK, Ramesh M, Saravanan M, Ponpandian N. Ecological risk assessment of silicon dioxide nanoparticles in a freshwater fish Labeo rohita : Hematology, ionoregulation and gill Na+ /K+-ATPase activity. Ecotoxicol. Environ. Saf. 2015;120:295-302.

DOI: 10.1016/j.ecoenv.2015.05.032.

Chupani L, Niksirat H, Velisek J, Stara A, Hradilova S, Kolarik J, Panacek A, Zuskova E. Chronic dietary toxicity of zinc oxide nanoparticles in common carp (Cyprinus carpio L.): Tissue accumulation and physiological responses. Ecotoxicol. Environ. Saf. 2018; 147:110-116.

DOI: 10.1016/j.ecoenv.2017.08.024.

Vajargah MF, Yalsuyi AM, Hedayati A, Faggio C. Histopathological lesions and toxicity in common carp (Cyprinus carpio L. 1758) induced by copper nanoparticles. Microsc. Res. Techniq. 2018;81:724-729.

DOI: 10.1002/jemt.23028.

Xiang QQ, Gao Y, Li QQ, Ling J, Chen LQ. Proteomic profiling reveals the differential toxic responses of gills of common carp exposed to nanosilver and silver nitrate. J. Hazard Mater. 2020;394:122562.

DOI: 10.1016/j.jhazmat.2020.122562.

Vali S, Mohammadi G, Tavabe KR, Moghadas F, Naserabad SS. The effects of silver nanoparticles (Ag-NPs) sublethal concentrations on common carp (Cyprinus carpio): Bioaccumulation, hematology, serum biochemistry and immunology, antioxidant enzymes, and skin mucosal responses. Ecotoxicol. Environ. Saf. 2020;194:110353.

DOI: 10.1016/j.ecoenv.2020.110353.

Johari SA, Sarkheil M, Asghari S, Haghighat F, Dekani L, Keyvanshokooh S. Comparative toxicity of nanoparticulate and ionic copper following dietary exposure to common carp (Cyprinus carpio). Comp Biochem Physiol C Toxicol Pharmacol. 2020;229:108680.

DOI: 10.1016/j.cbpc.2019.108680.

Mattsson K, Ekvall MT, Hansson LA, Linse S, Malmendal A, Cedervall T. Altered behavior, physiology and metabolism in fish exposed to polystyrene nanoparticles. Environ. Sci. Technol. 2014;49:553-561.

DOI: 10.1021/es5053655.

Jovanovic B, Whitley EM, Palic D. Histopathology of fathead minnow (Pimephales promelas) exposed to hydroxylated fullerenes. Nanotoxicology. 2014;8:755-763.

DOI: 10.3109/17435390.2013.828794.

Elizalde-Velazquez A, Crago J, Zhao X, Green MJ, Canas-Carrell JE. In vivo effects on the immune function of fathead minnow (Pimephales promelas) following ingestion and intraperitoneal injection of polystyrene nanoplastics. Sci. Total Environ. 2020;735: 139461.

DOI: 10.1016/j.scitotenv.2020.139461.

Vidya PV, Chitra KC. Elevation of reactive oxygen species in hepatocytes of tilapian fish when exposed to silicon dioxide: A potential environmental impact of nanomaterial. Int. J. Recent Sci. Res. 2015;6:2990-2995.

Abdel-Khalek AA, Badran SR, Marie MS. The efficient role of rice husk in reducing the toxicity of iron and aluminum oxides nanoparticles in Oreochromis niloticus: Hematological, bioaccumulation and histological endpoints. Water Air Soil Pollut. 2020;231:53.

DOI: 10.1007/s11270-020-4424-2.

Vidya PV, Asifa KP, Chitra KC. Effect of silica-nanoparticles (SiO2-NPs) on oxygen consumption in freshwater fish, oreochromis mossambicus (Peters, 1852). J. Global Biosci. 2016;5:3611-3614.

Murali M, Suganthi P, Athif P, Sadiq Bukhari A, Syed Mohamed HE, Basu H, Singhal RK. Histological alterations in the hepatic tissues of Al2O3 nanoparticles exposed freshwater fish Oreochromis mossambicus. J. Trace Elem. Med. Bio. 2017;44:125-131.

DOI: 10.1016/j.jtemb.2017.07.001.

Vidya PV, Chitra KC. Assessment of acute toxicity (LC50-96 h) of aluminium oxide, silicon dioxide and titanium dioxide nanoparticles on the freshwater fish, Oreochromis mossambicus (Peters, 1852). Int. J. Fish. Aquat. Stud. 2017;5:327-332.

Vidya PV, Chitra KC. Persistent toxic effects of titanium dioxide nanoparticles after treatment withdrawal in the freshwater fish, Oreochromis mossambicus (Peters, 1852). World J. Pharm. Life Sci. 2018;4:141-152.

Vidya PV, Chitra KC. Aluminium oxide nanoparticles induced irreversible alterations in the antioxidant defense system of the fish, Oreochromis mossambicus (Peters, 1852). Eur. J. Biomed. Pharm. Sci. 2018;5:1162- 1170.

Vidya PV, Chitra KC. Irreversible nanotoxicity of silicon dioxide nanoparticles in the freshwater fish Oreochromis mossambicus (Peters, 1852). Asian Fish. Sci. 2018;31:146-160.

Vidya PV, Chitra KC. Studies on histomorphological changes in the fish, Oreochromis mossambicus exposed to titanium dioxide nanoparticles - An irrecoverable damage. J. Biol. Nat. 2018;9:40-46.


Vidya PV, Chitra KC. Aluminium oxide nanoparticles induced irrevocable damages in gill, liver and brain tissues of the freshwater fish, Oreochromis mossambicus (Peters, 1852). Int. J. Fish. Aquat. Res. 2018;3:13-17.

Vidya PV, Chitra KC. Sublethal effects of silicon dioxide nanoparticles on the structure of gill, liver and brain tissues in the fish, Oreochromis mossambicus (Peters, 1852). Int. J. Appl. Res. 2018;4:228-232.

Vidya PV, Chitra KC. Irreversible histopathological modifications induced by iron oxide nanoparticles in the fish, Oreochromis mossambicus (Peters, 1852). Biol. Forum. 2019;11:1-6.

Vidya PV, Asifa KP, Chitra KC. Hepatic histopathology in Oreochromis mossambicus (Peters, 1852) under silica nanoparticles toxicity. Indian J. Exp. Biol. 2019;57:293-296.

Vidya PV, Chitra KC. Evaluation of genetic damage in the fish, Oreochromis mossambicus exposed to selected nanoparticles by using micronucleus and comet bioassays. Croat. J. Fish. 2018;76:115-124.

DOI: 10.2478/cjf-2018-0015

Sumi N, Chitra KC. Genotoxic effects of fullerene C60 nanomaterial on the freshwater fish, Anabas testudineus (Bloch, 1792) using micronucleus and comet assay. Mutat. Res. Gen. Tox. Environ. Mutagen. 2019;847: 503104.

DOI: 10.1016/j.mrgentox.2019.503104

Suganthi P, Murali M, Athif P, Bukhari AS, Mohamed HES, Basu H et al. Haemato-immunological studies in ZnO and TiO2 nanoparticles exposed euryhaline fish, Oreochromis mossambicus. Environ. Toxicol. Pharmacol. 2019;66:55-61.

DOI: 10.1016/j.etap.2018.12.011

Ghais SA, Vibha B, Pramod K, Omar AS. Effect of copper nanoparticles and organometallic compunds (dibutyltin) on tilapia fish. J. Basic Appl. Zool. 2019;80:32.


Al-Abdan MA, Bin-Jumah MN, Alarifi S. Exploration of cadmium dioxide nanoparticles on bioaccumulation, oxidative stress, and carcinogenic potential in Oreochromis mossambicus L. Oxid. Med. Cell Longev. 2020;2020:5407159.


Alkaladi A, Afifi M, Ali H, Saddick S. Hormonal and molecular alterations induced by sub-lethal toxicity of zinc oxide nanoparticles on Oreochromis niloticus. Saudi J. Biol. Sci. 2020;27:1296-1301.

DOI: 10.1016/j.sjbs.2020.01.010

Ibrahim ATA. Toxicological impact of green synthesized silver nanoparticles and protective role of different selenium type on Oreochromis niloticus: Hematological and biochemical response. J. Trace Elem. Med. Biol. 2020;61:126507.

DOI: 10.1016/j.jtemb.2020.126507.

Sumi N, Chitra KC. Consequence of fullerene nanoparticle (C60) on oxygen consumption and behavioural modification in Etroplus maculatus. Int. J. Curr. Res. Rev. 2015;7:40-44.

Sumi N, Chitra KC. Effects of fullerene (C60) on antioxidant enzyme activities and lipid peroxidation in gill of the cichlid fish, Etroplus maculatus (Bloch, 1795). J. Zool. Stud. 2016;3:31-37.

Sumi N, Chitra KC. Fullerene (C60) induced alteration in the brain antioxidant system of the cichlid fish, Pseudetroplus maculatus (Bloch, 1795). J. Global Biosci. 2017;6:4908-4917.

Sumi N, Chitra KC. Acute exposure to fullerene (C60) altered antioxidant defense system in hepatocytes of the cichlid fish, Pseudetroplus maculatus (Bloch, 1795). Int. J. Res. 2017;4:953-962.

Sumi N, Chitra KC. Histopathological alterations in gill, liver and muscle tissues of the freshwater fish, Pseudetroplus maculatus exposed to fullerene C60. Int. J. Fish. Aquat. Stud. 2017;5:604-608.

Federici G, Shaw BJ, Handy RD. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological effects. Aquat. Toxicol. 2007;84:415-430.

DOI: 10.1016/j.aquatox.2007.07.009

Blaise C, Gagne F, Ferard JF, Eullaffroy P. Ecotoxicity of selected nano-materials to aquatic organisms. Environ. Toxicol. 2008;23: 591-598.


Correia AT, Rebelo D, Marques J, Nunes B. Effects of the chronic exposure to cerium dioxide nanoparticles in Oncorhynchus mykiss: Assessment of oxidative stress, neurotoxicity and histological alterations. Environ. Toxicol. Pharmacol. 2019;68:27-36.


Correia AT, Rodrigues S, Ferreira-Martins D, Nunes AC, Ribeiro MI, Antunes SC. Multi-biomarker approach to assess the acute effects of cerium dioxide nanoparticles in gills, liver and kidney of Oncorhynchus mykiss. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2020;238:108842.

DOI: 10.1016/j.cbpc.2020.108842

Shabrangharehdasht M, Mirvaghefi A, Farahmand H. Effects of nanosilver on hematologic, histologic and molecular parameters of rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol. 2020;225:105549.

DOI: 10.1016/j.aquatox.2020.105549

Zeumer R, Galhano V, Monteiro MS, Kuehr S, Knopf B, Meisterjahn B et al. Chronic effects of wastewater-borne silver and titanium dioxide nanoparticles on the rainbow trout (Oncorhynchus mykiss). Sci. Total Environ. 2020;723:137974.

DOI: 10.1016/j.scitotenv.2020.137974

Ogunsuyi OI, Fadoju OM, Akanni OO, Alabi OA, Alimba CG, Cambier S et al. Genetic and systemic toxicity induced by silver and copper oxide nanoparticles, and their mixture in Clarias gariepinus (Burchell, 1822). Environ. Sci. Pollut. Res. Int. 2019;26:27470-27481.

DOI: 10.1007/s11356-019-05958-6

Kashiwada S. Distribution of nanoparticles in the see-through medaka (Oryzias latipes). Environ. Health Perspect. 2006;114:1697-1702.

DOI: 10.1289/ehp.9209

Sumi N, Chitra KC. Possible role of C60 fullerene in the induction of reproductive toxicity in the freshwater fish, Anabas testudineus (Bloch, 1792). Environ. Sci. Pollut. Res; 2020.

DOI: 10.1007/s11356-020-08509-6

Krysanov EY, Demidova TB, Pelgunova LA, Badalyan SM, Rumyantseva MN, Gaskov AM. Effect of hydrated tin dioxide (SnO2 • xH2O) nanoparticles on guppy (Poecilia reticulata Peters, 1860). Dokl. Biol. Sci. 2009;426:288-289.

DOI: 10.1134/s0012496609030284

Qualhato G, Rocha TL, De Oliveira-Lima EC, Silva DM, Cardoso JR, Grisolia CK et al. Genotoxic and mutagenic assessment of iron oxide (maghemite-γ-Fe2O3) nanoparticle in the guppy Poecilia reticulata. Chemosphere 2017;183:305-314.

DOI: 10.1016/j.chemosphere.2017.05.061

Mohsenpour R, Mousavi-Sabet H, Hedayati A, Rezaei A, Yalsuyi AM, Faggio C. In-vitro effects of silver nanoparticles on gills morphology of female Guppy (Poecilia reticulata) after a short-term exposure. Microsc. Res. Tech. 2020;1-6.

DOI: 10.1002/jemt.23549

Amjad S, Sharma AK, Serajuddin M. Toxicity assessment of cypermethrin nanoparticles in Channa punctatus: Behavioural response, micronuclei induction and enzyme alteration. Regul. Toxicol. Pharmacol. 2018;100:127- 133.

DOI: 10.1016/j.yrtph.2018.10.004

Barreto A, Dias A, Duarte B, Pint E, Almeida A, Trindade T et al. Biological effects and bioaccumulation of gold in gilthead seabream (Sparus aurata) - Nano versus ionic form. Sci. Total Environ. 2020;716:137026.

DOI: 10.1016/j.scitotenv.2020.137026

Kumar N, Chandan NK, Wakchaure GC, Singh NP. Synergistic effect of zinc nanoparticles and temperature on acute toxicity with response to biochemical markers and histopathological attributes in fish. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2020;229:108678.

DOI: 10.1016/j.cbpc.2019.108678