• Home
  • Register
  • Login

Journal of Disease and Global Health

  • About
    • About the Journal
    • Submissions & Author Guidelines
    • Articles in Press
    • Editorial Team
    • Editorial Policy
    • Publication Ethics and Malpractice Statement
    • Contact
  • Archives
  • Indexing
  • Submission
Advanced Search
  1. Home
  2. Archives
  3. 2022 - Volume 15 [Issue 3]
  4. Review Article

CYTOEPIGENETICS: DIALECTICAL REVIEW OF A SUBCELLULAR ENDO-MEMBRANOUS COORDINATION OF GENE EXPRESSION AND CELLULAR FATE

  •  DANIEL J. GUERRA

Journal of Disease and Global Health, Page 22-47
DOI: 10.56557/jodagh/2022/v15i38023
Published: 31 December 2022

  • View Article
  • Download
  • Cite
  • References
  • Statistics
  • Share

Abstract


CytoEpigenetics is a new event ontology in biochemistry. It involves the mutual interactions between the nuclear and mitochondrial genomes delivering asymmetric but equally necessary gene expression libraries that are mediated through proteome subcellular distribution via the lipid endomembranous system. There is a superimposed annotating epigenetic tailoring mechanism involving epi-transcriptional authorship, reading, and processing that must be in dynamic and kinetic communication for signaling, bioenergetics and cell fate. This mechanism requires substrates from intermediary metabolism to be used in covalent modification of DNA, RNA, and polypeptides via coordinated lipid membrane raft trafficking to support the endomembranous network.


Keywords:
  • CytoEpigenetics
  • DNA methylation
  • histone acetylation
  • miRNA
  • mRNA methyl adenosine
  • membrane lipid raft
  • phosphoglycerolipid
  • sphingolipids
  • cholesterol
  • sirtuins
  • S-adenosyl Methionine (SAM)
  • mitochondrial genome
  • bromodomain
  • PDF Requires Subscription or Fee (USD 30)
  •  PDF (INR 2100)

How to Cite

GUERRA, D. J. (2022). CYTOEPIGENETICS: DIALECTICAL REVIEW OF A SUBCELLULAR ENDO-MEMBRANOUS COORDINATION OF GENE EXPRESSION AND CELLULAR FATE. Journal of Disease and Global Health, 15(3), 22-47. https://doi.org/10.56557/jodagh/2022/v15i38023
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

References

Olli Matilainen, Pedro M. Quirós, Johan Auwerx, Mitochondria and Epigenetics – Crosstalk in Homeostasis and Stress, Trends in Cell Biology. 2017;27(6):453-463.

Available:https://doi.org/10.1016/j.tcb.2017.02.004.

Barlow DP, Bartolomei MS. Genomic imprinting in mammals. Cold Spring Harb Perspect Biol. 2014;6(2):a018382.

DOI: 10.1101/cshperspect.a018382. PMID: 24492710; PMCID: PMC3941233.

Zhao Y, Hou Y, Xu Y, et al. A compendium and comparative epigenomics analysis of cis-regulatory elements in the pig genome. Nature Communications. 2021;12(1):2217.

DOI: 10.1038/s41467-021-22448-x.

4.Saul, D.; Kosinsky, R.L. Epigenetics of Aging and Aging-Associated Diseases. Int. J. Mol. Sci. 2021;22:401.

Available:https://doi.org/10.3390/ijms22010401

Gao Y, Han M, Shang S, Wang H, Qi LS. Interrogation of the dynamic properties of higher-order heterochromatin using CRISPR-dCas9. Mol Cell. 2021;81(20):4287-4299.e5.

DOI: 10.1016/j.molcel.2021.07.034. Epub 2021 Aug 23. PMID: 34428454; PMCID: PMC8541924.

Shahid Z, Simpson B, Miao KH, et al. Genetics, Histone Code. [Updated 2021 Aug 11]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022.

Available:https://www.ncbi.nlm.nih.gov/books/NBK538477/

Li S, Tollefsbol TO. DNA methylation methods: Global DNA methylation and methylomic analyses. Methods. 2021;187:28-43.

DOI: 10.1016/j.ymeth.2020.10.002. Epub 2020 Oct 9. PMID: 33039572; PMCID: PMC7914139.

Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021 Feb;22(2):96-118.

DOI: 10.1038/s41580-020-00315-9. Epub 2020 Dec 22. Erratum in: Nat Rev Mol Cell Biol. 2021 Jan 8;: PMID: 33353982; PMCID: PMC7754182.

Westerman KE, Ordovás JM. DNA methylation and incident cardiovascular disease. Curr Opin Clin Nutr Metab Care. 2020 Jul;23(4):236-240.

DOI: 10.1097/MCO.0000000000000659. PMID: 32487875.

Tsang SH, Sharma T. Glossary of Relevant Genetic and Molecular/Cell Biology. Adv Exp Med Biol. 2018;1085:23-28.

DOI: 10.1007/978-3-319-95046-4_7. PMID: 30578480.

11.Pascual-Alonso, A.; Martínez-Monseny, A.F.; Xiol, C.; Armstrong, J. MECP2-Related Disorders in Males. Int. J. Mol. Sci. 2021;22:9610.

Available: https://doi.org/10.3390/ijms22179610

Liu Z, Li X, Zhang JT, Cai YJ, Cheng TL, Cheng C, Wang Y, Zhang CC, Nie YH, Chen ZF, Bian WJ, Zhang L, Xiao J, Lu B, Zhang YF, Zhang XD, Sang X, Wu JJ, Xu X, Xiong ZQ, Zhang F, Yu X, Gong N, Zhou WH, Sun Q, Qiu Z. Autism-like behaviours and germline transmission in transgenic monkeys overexpressing MeCP2. Nature. 2016 Feb 4;530(7588):98-102.

DOI: 10.1038/nature16533. Epub 2016 Jan 25. PMID: 26808898.

Ghosh K, Pan HL. Epigenetic Mechanisms of Neural Plasticity in Chronic Neuropathic Pain. ACS Chem Neurosci. 2022 Feb 16;13(4):432-441.

DOI: 10.1021/acschemneuro.1c00841. Epub 2022 Feb 2. PMID: 35107991.

14.Feinberg AP. Epigenetics at the epicenter of modern medicine. JAMA. 2008;299(11):1345-50.

DOI: 10.1001/jama.299.11.1345. PMID: 18349095.

Liu, Gang, et al. "DNA Methylation and the Potential Role of Methyl-Containing Nutrients in Cardiovascular Diseases." Oxidative Medicine and Cellular Longevity. 2017;annual 2017. Gale Academic OneFile, link.gale.com/apps/doc/A555850392/AONE?u=googlescholar&sid=bookmark-AONE&xid=5dc57510.)

Raffai, et al. Apolipoprotein E Promotes the Regression of Atherosclerosis Independently of Lowering Plasma Cholesterol Levels. Arteriosclerosis, Thrombosis, and Vascular Biology. 2005;25:436–441.

Available:https://doi.org/10.1161/01.ATV.0000152613.83243.1

Marais, A. David. Apolipoprotein E in lipoprotein metabolism, health and cardiovascular disease Pathology. 2019;51(2):165-176.

Available:https://doi.org/10.1016/j.pathol.2018.11.002

Qiao L, Ma J, Zhang Z, Sui W, Zhai C, Xu D, Wang Z, Lu H, Zhang M, Zhang C, Chen W, Zhang Y. Deficient Chaperone-Mediated Autophagy Promotes Inflammation and Atherosclerosis. Circ Res. 2021 Dec 3;129(12):1141-1157.

DOI: 10.1161/CIRCRESAHA.121.318908. Epub 2021 Oct 27. PMID: 34704457; PMCID: PMC8638823.

Hiddinga BI, Pauwels P, Janssens A, van Meerbeeck JP. O6-Methylguanine-DNA methyltransferase (MGMT): A drugable target in lung cancer? Lung Cancer. 2017 May;107:91-99.

DOI: 10.1016/j.lungcan.2016.07.014. Epub 2016 Jul 18. PMID: 27492578.

Semenza JC, Delfino RJ, Ziogas A, Anton-Culver H. Breast cancer risk and methylenetetrahydrofolate reductase polymorphism. Breast Cancer Res Treat. 2003 Feb;77(3):217-23.

DOI: 10.1023/a:1021843019755. PMID: 12602921.

21.Gabaldón T. Relative timing of mitochondrial endosymbiosis and the "pre-mitochondrial symbioses" hypothesis. IUBMB Life. 2018 Dec;70(12):1188-1196.

DOI: 10.1002/iub.1950. Epub 2018 Oct 25. PMID: 30358047; PMCID: PMC6282991.

F. C. Lopes, A. Mitochondrial metabolism and DNA methylation: a review of the interaction between two genomes. Clin Epigenet 12, 182 (2020).

Available: https://doi.org/10.1186/s13148-020-00976-5

Patra, S. K., Bettuzzi, S."Epigenetic DNA-methylation regulation of genes coding for lipid raft-associated components: A role for raft proteins in cell transformation and cancer progression (Review)". Oncology Reports. 2007;17(6):1279-1290.

Fanucchi S, Domínguez-Andrés J, Joosten LAB, Netea MG, Mhlanga MM. The Intersection of Epigenetics and Metabolism in Trained Immunity. Immunity. 2021 Jan 12;54(1):32-43.

DOI: 10.1016/j.immuni.2020.10.011. Epub 2020 Nov 20. PMID: 33220235.

Hajri T, Zaiou M, Fungwe TV, Ouguerram K, Besong S. Epigenetic Regulation of Peroxisome Proliferator-Activated Receptor Gamma Mediates High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease. Cells. 2021; 10(6):1355.

Available:https://doi.org/10.3390/cells10061355

Jensen T, Abdelmalek MF, Sullivan S, Nadeau KJ, Green M, Roncal C, Nakagawa T, Kuwabara M, Sato Y, Kang DH, Tolan DR, Sanchez-Lozada LG, Rosen HR, Lanaspa MA, Diehl AM, Johnson RJ. Fructose and sugar: A major mediator of non-alcoholic fatty liver disease. J Hepatol. 2018 May;68(5):1063- 1075.

DOI: 10.1016/j.jhep.2018.01.019. Epub 2018 Feb 2. PMID: 29408694; PMCID: PMC5893377.

Bäckhed, Fredrik et al. The gut microbiota as an environmental factor thatregulates fat storage(Proc Natl Acad Sci U S A. 2004 Nov 2;101(44):15718-23.

Available: https://www.pnas.or/

Murru E, Manca C, Carta G, Banni S. Impact of Dietary Palmitic Acid on Lipid Metabolism. Front Nutr. 2022 Mar 23;9:861664.

DOI: 10.3389/fnut.2022.861664. PMID: 35399673; PMCID: PMC8983927..

Andressa Busetti Martins, Milene Lara Brownlow, Bruno Blanco Araújo, Marcela Cristina Garnica-Siqueira, Dimas Augusto Morozin Zaia, Cristiane Mota Leite, Cássia Thaïs Bussamra Vieira Zaia, Ernane Torres Uchoa. Arcuate nucleus of the hypothalamus contributes to the hypophagic effect and plasma metabolic changes induced by vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide, Neurochemistry International. 2022; 155:105300.

ISSN 0197-0186,

Available:https://doi.org/10.1016/j.neuint.2022.105300..

Hertzel AV, Xu H, Downey M, Kvalheim N, Bernlohr DA. Fatty acid binding protein 4/aP2-dependent BLT1R expression and signaling. J Lipid Res. 2017 Jul;58(7):1354-1361.

DOI: 10.1194/jlr.M074542. Epub 2017 May 25. PMID: 28546450; PMCID: PMC5496033.

Villeneuve J, Bassaganyas L, Lepreux S, Chiritoiu M, Costet P, Ripoche J, Malhotra V, Schekman R. Unconventional secretion of FABP4 by endosomes and secretory lysosomes. J Cell Biol. 2018 Feb 5;217(2):649-665.

DOI: 10.1083/jcb.201705047. Epub 2017 Dec 6. PMID: 29212659; PMCID: PMC5800802.

Trojnar M, Patro-Małysza J, Kimber-Trojnar Ż, Leszczyńska-Gorzelak B, Mosiewicz J. Associations between Fatty Acid-Binding Protein 4–A Proinflammatory Adipokine and Insulin Resistance, Gestational and Type 2 Diabetes Mellitus. Cells. 2019; 8(3):227.

Available:https://doi.org/10.3390/cells8030227

Prentice KJ, Saksi J, Hotamisligil GS. Adipokine FABP4 integrates energy stores and counterregulatory metabolic responses. J Lipid Res. 2019 Apr;60(4):734-740.

DOI: 10.1194/jlr.S091793. Epub 2019 Jan 30. PMID: 30705117; PMCID: PMC6446704.

Yang H, Deng Q, Ni T, Liu Y, Lu L, Dai H, Wang H, Yang W. Targeted Inhibition of LPL/FABP4/CPT1 fatty acid metabolic axis can effectively prevent the progression of nonalcoholic steatohepatitis to liver cancer. Int J Biol Sci. 2021 Oct 11;17(15):4207-4222.

DOI: 10.7150/ijbs.64714. PMID: 34803493; PMCID: PMC8579444.

Gan, L., Liu, Z., Cao, W. et al. FABP4 reversed the regulation of leptin on mitochondrial fatty acid oxidation in mice adipocytes. Sci Rep 5, 13588 (2015).

Available: https://doi.org/10.1038/srep13588

Yan F, Shen N, Pang JX, Zhang YW, Rao EY, Bode AM, Al-Kali A, Zhang DE, Litzow MR, Li B, Liu SJ. Fatty acid-binding protein FABP4 mechanistically links obesity with aggressive AML by enhancing aberrant DNA methylation in AML cells. Leukemia. 2017 Jun;31(6):1434-1442.

DOI: 10.1038/leu.2016.349. Epub 2016 Nov 25. PMID: 27885273; PMCID: PMC5457366.

Xinxia Wang, Ruifan Wu, Youhua Liu, Yuanling Zhao, Zhen Bi, Yongxi Yao, Qing Liu, Hailing Shi, Fengqin Wang & Yizhen Wang. m6A mRNA methylation controls autophagy and adipogenesis by targeting Atg5 and Atg7, Autophagy. 2020;16(7):1221-1235.

DOI: 10.1080/15548627.2019.1659617

Widagdo J, Anggono V. The m6A-epitranscriptomic signature in neurobiology: from neurodevelopment to brain plasticity. J Neurochem. 2018 Oct;147(2):137-152.

DOI: 10.1111/jnc.14481. Epub 2018 Aug 1. PMID: 29873074.

Ting Sun, Ruiyan Wu, Liang Ming. The role of m6A RNA methylation in cancer. Biomedicine & Pharmacotherapy. 2019;112:108613,ISSN 0753-3322.

Available:https://doi.org/10.1016/j.biopha.2019 108613.

Available:https://www.ncbi.nlm.nih.gov/gene/79068

Motoni Kadowaki, Md. Razaul Karim, Chapter 13 Cytosolic LC3 Ratio as a Quantitative Index of Macroautophagy. Methods in Enzymology. Academic Press. 2009;452:199-213.

ISSN 0076-6879,ISBN 9780123745477

Available:https://doi.org/10.1016/S0076-6879(08)03613-6.

42.F itz-James MH, Cavalli G. Molecular mechanisms of transgenerational epigenetic inheritance. Nat Rev Genet. 2022 Jun;23(6):325-341.

DOI: 10.1038/s41576-021-00438-5.

Epub 2022 Jan 4. PMID: 34983971.

Macgregor-Das, Anne M. and Samarjit Das. A microRNA’s journey to the center of the mitochondria. American J of Physiology. Heart and Circulatory Physiology; 2018.

Available:https://doi.org/10.1152/ajpheart.00714.2017

Hanafusa K, Hotta T, Iwabuchi K. Glycolipids: Linchpins in the Organization and Function of Membrane Microdomains. Front Cell Dev Biol. 2020 Oct 29;8:589799.

DOI: 10.3389/fcell.2020.589799. PMID: 33195253; PMCID: PMC7658261.).

45.Ljubava D. Zorova, Vasily A. Popkov, Egor Y. Plotnikov, Denis N. Silachev, Irina B. Pevzner, Stanislovas S. Jankauskas, Valentina A. Babenko, Savva D. Zorov, Anastasia V. Balakireva, Magdalena Juhaszova, Steven J. Sollott, Dmitry B. Zorov,. Mitochondrial membrane potential. Analytical Biochemistry. 2018;552:50-59.

ISSN 0003-2697

Available:https://doi.org/10.1016/j.ab.2017.07.009.

Vamecq J, Dessein AF, Fontaine M, Briand G, Porchet N, Latruffe N, Andreolotti P, Cherkaoui-Malki M. Mitochondrial dysfunction and lipid homeostasis. Curr Drug Metab. 2012 Dec;13(10):1388-400.

DOI: 10.2174/138920012803762792. PMID: 22978394.

Chin MT, Conway SJ. Role of Tafazzin in Mitochondrial Function, Development and Disease. Journal of Developmental Biology. 2020; 8(2):10.

Available:https://doi.org/10.3390/jdb8020010

Yang, K., Wang, X., Zhang, H. et al. The evolving roles of canonical WNT signaling in stem cells and tumorigenesis: implications in targeted cancer therapies. Lab Invest. 2016;96:116–136.

Available:https://doi.org/10.1038/labinvest.2015.144.

Kriz V, Korinek V. Wnt, RSPO and Hippo Signalling in the Intestine and Intestinal Stem Cells. Genes (Basel). 2018 Jan 8;9(1):20.

DOI: 10.3390/genes9010020. PMID: 29316729; PMCID: PMC5793173.

Sharma, Ankita, Rafeeq Mir and Sanjeev Galand. Epigenetic Regulation of the Wnt/β-Catenin Signaling Pathway in Cancer. Front. Genet., 06 September 2021Sec. Epigenomics and Epigenetics

Available:https://doi.org/10.3389/fgene.2021.681053

Ten VS, Ratner V. Mitochondrial bioenergetics and pulmonary dysfunction: Current progress and future directions. Paediatr Respir Rev. 2020 Apr;34:37-45.

DOI: 10.1016/j.prrv.2019.04.001.

Valiente-Pallejà A, Tortajada J, Bulduk BK, Vilella E, Garrabou G, Muntané G, Martorell L. Comprehensive summary of mitochondrial DNA alterations in the postmortem human brain: A systematic review. EBioMedicine. 2022 Feb;76:103815.

DOI: 10.1016/j.ebiom.2022.103815. Epub 2022 Jan 24. PMID: 35085849; PMCID: PMC8790490.)

Hearse DJ. Oxygen deprivation and early myocardial contractile failure: a reassessment of the possible role of adenosine triphosphate. Am J Cardiol. 1979 Nov;44(6):1115-21.

DOI: 10.1016/0002-9149(79)90177-2. PMID: 495506.)

Kumari N, Karmakar A, Ahamad Khan MM, Ganesan SK. The potential role of m6A RNA methylation in diabetic retinopathy. Exp Eye Res. 2021 Jul;208:108616.

DOI: 10.1016/j.exer.2021.108616. Epub 2021 May 9. PMID: 33979630;

Yang Y, Cai J, Yang X, Wang K, Sun K, Yang Z, Zhang L, Yang L, Gu C, Huang X, Wang Z, Zhu X. Dysregulated m6A modification promotes lipogenesis and development of non-alcoholic fatty liver disease and hepatocellular carcinoma. Mol Ther. 2022;30(6):2342-2353.

DOI: 10.1016/j.ymthe.2022.02.021. Epub 2022 Feb 19. PMID: 35192934; PMCID: PMC9171149.

Dosch M, Gerber J, Jebbawi F, Beldi G. Mechanisms of ATP Release by Inflammatory Cells. Int J Mol Sci. 2018 Apr 18;19(4):1222.

DOI: 10.3390/ijms19041222. PMID: 29669994; PMCID: PMC5979498.

Baumgartner HK, Gerasimenko JV, Thorne C, Ferdek P, Pozzan T, Tepikin AV, Petersen OH, Sutton R, Watson AJ, Gerasimenko OV. Calcium elevation in mitochondria is the main Ca2+ requirement for mitochondrial permeability transition pore (mPTP) opening. J Biol Chem. 2009 Jul 31;284(31):20796- 803.

DOI: 10.1074/jbc.M109.025353. Epub 2009 Jun 10. PMID: 19515844; PMCID: PMC2742844.

Cai J, Yang J, Jones DP. Mitochondrial control of apoptosis: the role of cytochrome c. Biochim Biophys Acta. 1998 Aug 10;1366(1-2):139-49.

DOI: 10.1016/s0005-2728(98)00109-1. PMID: 9714780.

Wagner A, Kosnacova H, Chovanec M, Jurkovicova D. Mitochondrial Genetic and Epigenetic Regulations in Cancer: Therapeutic Potential. Int J Mol Sci. 2022 Jul 18;23(14):7897. doi: 10.3390/ijms23147897. PMID: 35887244; PMCID: PMC9321253

Abrisch, Robert G. Samantha C. Gumbin, Brett Taylor Wisniewski, Laura L. Lackner, Gia K. Voeltz; Fission and fusion machineries converge at ER contact sites to regulate mitochondrial morphology. J Cell Biol 6 April 2020; 219 (4): e201911122.

DOI: https://doi.org/10.1083/jcb.201911122).

Hall AR, Burke N, Dongworth RK, Hausenloy DJ. Mitochondrial fusion and fission proteins: novel therapeutic targets for combating cardiovascular disease. Br J Pharmacol. 2014 Apr;171(8):1890-906.

DOI: 10.1111/bph.12516. PMID: 24328763; PMCID: PMC3976611.).

62.Chao de la Barca JM, Arrázola MS, Bocca C, Arnauné-Pelloquin L, Iuliano O, Tcherkez G, Lenaers G, Simard G, Belenguer P, Reynier P. The Metabolomic Signature of Opa1 Deficiency in Rat Primary Cortical Neurons Shows Aspartate/Glutamate Depletion and Phospholipids Remodeling. Sci Rep. 2019 Apr 15;9(1):6107.

DOI: 10.1038/s41598-019-42554-7. PMID: 30988455; PMCID: PMC6465244.

Chiang S, Huang MLH, Park KC, Richardson DR. Antioxidant defense mechanisms and its dysfunctional regulation in the mitochondrial disease, Friedreich's ataxia. Free Radic Biol Med. 2020 Nov 1;159:177-188.

DOI: 10.1016/j.freeradbiomed.2020.07.019. Epub 2020 Jul 30. PMID: 32739593

Tan Y, Gan M, Fan Y, Li L, Zhong Z, Li X, Bai L, Zhao Y, Niu L, Shang Y, Zhang S, Zhu L. miR-10b-5p regulates 3T3-L1 cells differentiation by targeting Apol6. Gene. 2019 Mar 1;687:39-46.

DOI: 10.1016/j.gene.2018.11.028. Epub 2018 Nov 10. PMID: 30423386

Moradi Sarabi M, Zahedi SA, Pajouhi N, Khosravi P, Bagheri S, Ahmadvand H, Shahryarhesami S. The effects of dietary polyunsaturated fatty acids on miR-126 promoter DNA methylation status and VEGF protein expression in the colorectal cancer cells. Genes Nutr. 2018 Dec 18;13:32.

DOI: 10.1186/s12263-018-0623-5.PMID: 30598703; PMCID: PMC6299631..)

Falk KL, Guerra DJ. Coenzyme A biosynthesis in plants: partial purification and characterization of pantothenate kinase from spinach. Arch Biochem Biophys. 1993 Mar;301(2):424-30.

DOI: 10.1006/abbi.1993.1166. PMID: 8384834.

Available:https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/pantothenate-kinase

Zhang YM, Rock CO, Jackowski S. Feedback regulation of murine pantothenate kinase 3 by coenzyme A and coenzyme A thioesters. J Biol Chem. 2005 Sep 23;280(38):32594-601.

DOI: 10.1074/jbc.M506275200. Epub 2005 Jul 22. PMID: 16040613).

Vicioso-Mantis M, Aguirre S, Martínez-Balbás MA. JmjC Family of Histone Demethylases Form Nuclear Condensates. Int J Mol Sci. 2022 Jul 11;23(14):7664.

DOI: 10.3390/ijms23147664. PMID: 35887017; PMCID: PMC9319511.).

Du X, Hu H. The Roles of 2-Hydroxyglutarate. Front Cell Dev Biol. 2021 Mar 26;9:651317.

DOI: 10.3389/fcell.2021.651317. PMID: 33842477; PMCID: PMC8033037.

Xiu Y, Field MS. The Roles of Mitochondrial Folate Metabolism in Supporting Mitochondrial DNA Synthesis, Oxidative Phosphorylation, and Cellular Function. Curr Dev Nutr. 2020 Sep 25;4(10):nzaa153.

DOI: 10.1093/cdn/nzaa153. PMID: 33134792; PMCID: PMC7584446.

Sissler M, Lorber B, Messmer M, Schaller A, Pütz J, Florentz C. Handling mammalian mitochondrial tRNAs and aminoacyl-tRNA synthetases for functional and structural characterization. Methods. 2008 Feb;44(2):176-89.

DOI: 10.1016/j.ymeth.2007.11.002. PMID: 18241799.

Steiner RE, Ibba M. Bridging the Gap between tRNA Modifications and the Respiratory Chain. Biochemistry. 2018 May 8;57(18):2565-2566.

DOI: 10.1021/acs.biochem.8b00377. Epub 2018 Apr 13. PMID: 29652136.

Ackerman DG, Feigenson GW. Lipid bilayers: clusters, domains and phases. Essays Biochem. 2015;57:33-42.

DOI: 10.1042/bse0570033. PMID: 25658342; PMCID: PMC4377075.

Vance JE, Steenbergen R. Metabolism and functions of phosphatidylserine. Prog Lipid Res. 2005 Jul;44(4):207-34.

DOI: 10.1016/j.plipres.2005.05.001. PMID: 15979148

Tafesse FG, Ternes P, Holthuis JC. The multigenic sphingomyelin synthase family. J Biol Chem. 2006 Oct 6;281(40):29421-5.

DOI: 10.1074/jbc.R600021200. Epub 2006 Aug 11. PMID: 16905542.

Kolczynska K, Loza-Valdes A, Hawro I, Sumara G. Diacylglycerol-evoked activation of PKC and PKD isoforms in regulation of glucose and lipid metabolism: a review. Lipids Health Dis. 2020 May 28;19(1):113.

DOI: 10.1186/s12944-020-01286-8. PMID: 32466765; PMCID: PMC7257441.

Huang KP. The mechanism of protein kinase C activation. Trends Neurosci. 1989 Nov;12(11):425-32.

DOI: 10.1016/0166-2236(89)90091-x. PMID: 2479143.

Ishikawa E, Kosako H, Yasuda T, Ohmuraya M, Araki K, Kurosaki T, Saito T, Yamasaki S. Protein kinase D regulates positive selection of CD4+ thymocytes through phosphorylation of SHP-1. Nat Commun. 2016 Sep 27;7:12756.

DOI: 10.1038/ncomms12756. PMID: 27670070; PMCID: PMC5052653.

Attard GS, Templer RH, Smith WS, Hunt AN, Jackowski S. Modulation of CTP:phosphocholine cytidylyltransferase by membrane curvature elastic stress. Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9032-6.

DOI: 10.1073/pnas.160260697. PMID: 10908674; PMCID: PMC16816.

Wu, Z., Nicoll, M. & Ingham, R.J. AP-1 family transcription factors: a diverse family of proteins that regulate varied cellular activities in classical hodgkin lymphoma and ALK+ ALCL. Exp Hematol Oncol 10, 4 (2021).

Available:https://doi.org/10.1186/s40164-020-00197

Caputto BL, Cardozo Gizzi AM, Gil GA. c-Fos: an AP-1 transcription factor with an additional cytoplasmic, non-genomic lipid synthesis activation capacity. Biochim Biophys Acta. 2014 Sep;1841(9):1241-6.

DOI: 10.1016/j.bbalip.2014.05.007. Epub 2014 Jun 2. PMID: 24886961.

Dyrvig M, Hansen HH, Christiansen SH, Woldbye DP, Mikkelsen JD, Lichota J. Epigenetic regulation of Arc and c-Fos in the hippocampus after acute electroconvulsive stimulation in the rat. Brain Res Bull. 2012 Aug 1;88(5):507-13.

DOI: 10.1016/j.brainresbull.2012.05.004. Epub 2012 May 18. PMID: 22613772.

Gustems M, Woellmer A, Rothbauer U, Eck SH, Wieland T, Lutter D, Hammerschmidt W. c-Jun/c-Fos heterodimers regulate cellular genes via a newly identified class of methylated DNA sequence motifs. Nucleic Acids Res. 2014 Mar;42(5):3059-72.

DOI: 10.1093/nar/gkt1323. Epub 2013 Dec 25. PMID: 24371273; PMCID: PMC3950711

Martínez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun. 2020 Jan 3;11(1):102.

DOI: 10.1038/s41467-019-13668-3. PMID: 31900386; PMCID: PMC6941980.

Kim SY, Zhang X, Schiattarella GG, Altamirano F, Ramos TAR, French KM, Jiang N, Szweda PA, Evers BM, May HI, Luo X, Li H, Szweda LI, Maracaja-Coutinho V, Lavandero S, Gillette TG, Hill JA. Epigenetic Reader BRD4 (Bromodomain-Containing Protein 4) Governs Nucleus-Encoded Mitochondrial Transcriptome to Regulate Cardiac Function. Circulation. 2020 Dec 15;142(24):2356-2370.

DOI: 10.1161/CIRCULATIONAHA.120.047239. Epub 2020 Oct 28. PMID: 33113340; PMCID: PMC7736324.

Khaire AA, Kale AA, Joshi SR. Maternal omega-3 fatty acids and micronutrients modulate fetal lipid metabolism: A review. Prostaglandins Leukot Essent Fatty Acids. 2015 Jul;98:49-55.

DOI: 10.1016/j.plefa.2015.04.007. Epub 2015 Apr 25. PMID: 25958298.

Dai YL, Huang SL, Leng Y. AICAR and Metformin Exert AMPK-dependent Effects on INS-1E Pancreatic β-cell Apoptosis via Differential Downstream Mechanisms. Int. J Biol Sci. 2015 Sep 14;11(11):1272-80.

DOI: 10.7150/ijbs.12108. PMID: 26435693; PMCID: PMC4582151.MID: 26435693; PMCID: PMC4582151.
  • Abstract View: 51 times
    PDF Download: 3 times

Download Statistics

Downloads

Download data is not yet available.
  • Linkedin
  • Twitter
  • Facebook
  • WhatsApp
  • Telegram
Subscription

Login to access subscriber-only resources.

Information
  • For Readers
  • For Authors
  • For Librarians


Terms & Condition | Privacy Policy | Help | Team | Advertising Policy
Copyright @ 2000-2021 I.K. Press. All rights reserved.