Interactions between Humic Acid and the Mineral Surface of Laterite at Different Environmental pH
Journal of Global Ecology and Environment, Volume 17, Issue 3,
Page 40-50
DOI:
10.56557/jogee/2023/v17i38196
Abstract
Organic compounds such as humic substances in the natural environment, especially in aquatic environments, are source of environmental problems. The stability of humic compounds in the soil is due to their adsorption on colloid surfaces through reactions with cations to form organ- mineral complexes. Many parameters such as pH, ionic strength. can affect the adsorption of humic substance on mineral surfaces. This study was initiated to investigate the use of a natural geo-material such as laterite for recovery and environmental application through batch adsorption tests. Since this system is a closed and agitated system, it makes it possible to obtain the maximum conditions for adsorption. Lateritic soil are abundant in tropical soil and exhibits some specificities that could promote humic acids-soil interactions. So, the analysis of pH influence on humic acid-laterite interactions is monitores through batch adsorption tests of a commercial humic acid at different pH (4.5; 6.5 and 8.5). The adsorption kinetic yield (R) is followed at each pH. Prior to the adsoption test, the raw laterite was analysed using infrared spectroscopy. The results of the kinetics of humic acid adsorption yield at different pH (4.5; 6.5 and 8.5) showed that the adsorption yield was inversely proportional to the increase of pH. The highest yield is obtained at pH 4.5 (94.56 %). Infrared analyzes of the laterite before and after adsorption shows that the surface of the laterite has undergone modifications associated to humic acid presence in the complexe after adsorption test. However, the media most affected by adsorption were observed at pH 8.5 and pH 4.5. The changes observed are due to the interactions between the aluminum oxides of gibbsite-AH (Al(OH)2–O–R) and kaolinite-AH (Si2O5Al2(OH)3–OH–R present on the surface of materials and the bonds of carboxylic, aromatic, phenolic, etc. groups confirms the adsorption reaction between humic acid and laterite.
- Humic acid
- endogenous geomaterials
- laterites
- interaction
- Infrared
How to Cite
References
Vigneault B. Interactions of dissolved humic substances with unicellular algae – Mechanisms and implications [PhD thesis]. University of Quebec INRS - Water. 2000;164.
Ni Nyoman R, Pandit BV. Humic Substances: structure, function, effects and applications. Asian J Water About Pollut. 2008;5:39-47.
Tahiri A, Destain J, Thonart P, Druart P. Valuation and properties of humic substances in landfill leachate. J Mater About Sci. 2014;5(2):2495-8.
Naman F, Soudi B, Herradi EL, EL H. Extraction and characterization of humic substances from the soils of the Doukkala irrigated perimeter in Morocco. J Mater About Sci. 2015;6(9):2647- 54.
Maiga AS. Organoleptic quality of drinking water produced and distributed by EDM.sa in the city of Bamako: seasonal evaluation [PhD thesis] at the University of Bamako, Bamako, Mali. 2005;77.
Seo DJ, Kim YJ, Ham SY, Lee DH. Characterization of dissolved organic matter in leachate discharged from final disposal sites which contained municipal solid waste incineration residues. J Hazard Mater. 2007;148(3):679-92.
DOI: 10.1016/j.jhazmat.2007.03.027, PMID 17452075.
Goné DL. Natural organic matter in surface waters of the Agnéby watershed: Characterization and elimination by coagulation-flocculation during the production of drinking water [state thesis in environmental sciences and management]. Nangui Abrogoua University. 2010;257.
Nguyen TAH, Ngo HH, Guo WS, Zhang J, Liang S, Yue QY et al. Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater. Bioresour Technol. 2013; 148:574-85.
DOI: 10.1016/j.biortech.2013.08.124, PMID 24045220.
Jung AV, Chanudet V, Ghanbaja J, Lartiges BS, Bersillon JL. Coagulation of humic substances and dissolved organic matter with ferric salt: An electron energy loss spectroscopy investigation. Water Res. 2005;39(16):3849-62.
DOI: 10.1016/j.watres.2005.07.008, PMID 16112165.
Kögel-Knabner I, Guggenberger G, Kleber M, Kandeler E, Kalbitz K, Scheu S, et al. Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry. J Plant Nutr Soil Sci. 2008;171(1):61-82.
DOI: 10.1002/jpln.200700048
Jangorzo NS. Quantification of the aggregation process in Technosols [doctoral thesis] at the University of Lorraine, Lorraine, France. 2013;188.
Derakhshani E, Naghizadeh A. Optimization of humic acid removal by adsorption onto bentonite and montmorillonite nanoparticles. J Mol Liq. 2018;259:76-81.
DOI: 10.1016/j.molliq.2018.03.014
Coulibaly Y, Tiangoua K, Kamagaté M, Ouattara PJM, Coulibaly SL, Coulibaly L. Characterization of the leachate from the municipal landfill of Akouédo (Abidjan, Côte d'Ivoire). About Earth Sci. 2020;10(4):17-22.
Reiller P, Moulin V, Casanova F, Dautel C. Retention behavior of humic substances onto mineral surfaces and consequences upon thorium (IV) mobility: Case of iron oxides. Geochem app. 2002;17: 1538-51.
Weng LP, Koopal LK, Hiemstra T, Meeussen JCL, Van Riemsdijk WH. Interactions of calcium and fulvic acid at the goethite-water interface. Geochim Cosmochim Acta. 2005;69(2):325-39.
DOI: 10.1016/j.gca.2004.07.002
Suteerapataranon S, Bouby M, Geckeis H, Fanghänel T, Grudpan K. Interaction of trace elements in acid mine drainage solution with humic acid. Water Res. 2006;40(10):2044-54.
DOI: 10.1016/j.watres.2006.03.009, PMID 16631855.
Claret F, Schäfer T, Brevet J, Reiller PE. Fractionation of Suwannee River fulvic acid and Aldrich humic acids on α-Al2O3: spectroscopic evidence. About Sci Technol. 2008;42(23):8809-15.
DOI: 10.1021/es801257g
PMID 19192802.
Achour S, Seghairi N. Possibilities of retention of humic substances by adsorption on bentonite. J LARHYSS. 2002;01:08-14.
Gueu S. Elimination of humic acids present in water by adsorption and/or photocatalysis [doctoral thesis] at the University of Lorraine. France: the National Polytechnic Institute Felix Houphouet Boigny of Yamoussoukro (Yamoussoukro - Ivory Coast). 2019;136.
Reiller P. Critical analysis of lanthanide and actinide complexation data by natural organic matter: case of humic substances. CEA report, CEA-R-6240. Gif-sur-Yvette, France. 2010;226.
Lee H, Coulon F, Wagland ST. Influence of pH, depth and humic acid on metal and metalloids recovery from municipal solid waste landfills. Sci Total Environ. 2022; 806(1):150332.
DOI: 10.1016/j.scitotenv.2021.150332, PMID 34555612.
Chen P, Shi M, Liu X, Wang X, Fang M, Guo Z, et al. Comparison of the binding interactions of 4-hydroxyphenylpyruvate dioxygenase inhibitor herbicides with humic acid: insights from multispectroscopic techniques, DFT and 2D-COS-FTIR. Ecotoxicol Environ Saf.
Coulibaly SL. Abatement of phosphates from wastewater by adsorption on geo-materials made up of laterite, sandstone and slate shale [doctoral thesis]. France: University of Lorraine/Abidjan, Ivory Coast: NANGUI ABROGOUA University. 2014; 233.
Coulibaly Y, Kone T, Ouattara PJM, Coulibaly SL, Mbey J-A. Attenuation of the proportion of humic acid in the landfill leachate by laterite. J Mater Environ Sci. 2021;12(12):1561-80.
Tan XL, Wang XK, Geckeis H, Rabung TH. Sorption of Eu(III) on humic acid or fulvic acid bound to hydrous alumina studied by SEM-EDS, XPS, TRLFS, and batch techniques. Environ Sci Technol. 2008; 42(17):6532-7.
DOI: 10.1021/es8007062
PMID 18800526.
Wang S, Ma Q, Zhu ZH. Characteristics of unburned carbons and their application for humic acid removal from water. Fuel Process Technol. 2009;90(3):375-80.
DOI: 10.1016/j.fuproc.2008.10.010.
Lackovic K, Johnson BB, Angove MJ, Wells JD. Modeling the adsorption of citric acid onto muloorina illite and related clay minerals. J Colloid Interface Sci. 2003;267(1):49-59.
DOI: 10.1016/s0021-9797(03)00693-3, PMID 14554166.
Johnson SB, Yoon TH, Brown GE. Adsorption of organic matter at mineral/ water interfaces: 5. Effects of adsorbed natural organic matter analogues on mineral dissolution. Langmuir. 2005; 21(7):2811-21.
DOI: 10.1021/la0481041, PMID 15779953.
Guan XH, Chen GH, Shang C. Combining kinetic investigation with surface spectroscopic examination to study the role of aromatic carboxyl groups in NOM adsorption by aluminum hydroxide. J Colloid Interface Sci. 2006;301(2):419-27.
DOI: 10.1016/j.jcis.2006.05.031
PMID 16777125.
Kang S, Xing B. Adsorption of dicarboxylic acids by clay minerals as examined by in situ ATR-FTIR and ex situ DRIFT. Langmuir. 2007;23(13):7024-31.
DOI: 10.1021/la700543f, PMID 17508766.
Kang S, Amarasiriwardena D, Xing B. Effect of dehydration on dicarboxylic acid coordination at goethite/water interface. Colloids Surf A Physicochem Eng Aspects. 2008;318(1-3):275-84.
DOI: 10.1016/j.colsurfa.2008.01.004
Daifullah AAM, Girgis BS, Gad HMH. A study of the factors affecting the removal of humic acid by activated carbon prepared from biomass material. Colloids Surf A Physicochem Eng Aspects. 2004;235(1-3):1-10.
DOI: 10.1016/j.colsurfa.2003.12.020
Chen H, Koopal LK, Xiong J, Avena M, Tan W. Mechanisms of soil humic acid adsorption onto montmorillonite and kaolinite. J Colloid Interface Sci. 2017; 504:457-67.
DOI: 10.1016/j.jcis.2017.05.078, PMID 28600939.
Ochs M, Ćosović B, Stumm W. Coordinative and hydrophobic interaction of humic substances with hydrophilic Al2O3 and hydrophobic mercury surfaces. Geochim Cosmochim Acta. 1994;58(2): 639-50.
DOI: 10.1016/0016-7037(94)90494-4
Takahashi Y, Minai Y, Ambe S, Makide Y, Ambe F. Comparison of adsorption behavior of multiple inorganic ions on kaolinite and silica in the presence of humic acid using the multitracer technique – A comparison with dissolved aluminum. Geochim Cosmochim Acta. 1999;63:806-15.
Achour S, Guergazi S. Effet de sels métalliques sur la chloration de substances humiques en eau distillée. LARHYSS J. 2003;02:105-13.
Salman M, El-Eswed B, Khalili F. Adsorption of humic acid on bentonite. Appl Clay Sci. 2007;38(1-2):51-6.
DOI: 10.1016/j.clay.2007.02.011
Niemeyer J, Chen Y, Bollag J-M. Characterization of humic acids, composts and peat by diffuse reflectance Fourier-Transform infrared spectroscopy. Soil Sci Soc Am J. 1992;56(1):135-40.
DOI: 10.2136/sssaj1992.03615995005600010021x.
Senesi N, D’Orazio V, Ricca G. Humic acids in the first generation of EUROSOILS. Geoderma. 2003;116(3-4):325-44.
DOI: 10.1016/S0016-7061(03)00107-1
Dietzel M, Böhme G. The dissolution rates of gibbsite in the presence of chloride, nitrate, silica, sulfate and citrate in open and closed systems at 20°C. Geochim Cosmochim Acta. 2005;69(5):1199-211.
DOI: 10.1016/j.gca.2004.08.027
Kaiser K, Guggenberger G. The role of DOM sorption to mineral to soils and related mineral phases. Soil Sci Soc Am J. 2013;61(1):64-9.
Plancque G, Amekraz B, Moulin V, Toulhoat P, Moulin C. Molecular structure of fulvic acids by electrospray with quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2001;15(10):827-35.
DOI: 10.1002/rcm.307, PMID 11344544.
Abate G, Masini JC. Influence of pH and ionic strength on removal processes of a sedimentary humic acid in a suspension of vermiculite. Colloids Surf A Physicochem Eng Aspects. 2003;226(1-3):25-34.
DOI: 10.1016/S0927-7757(03)00418-7
Wang M, Liao L, Zhang X, Li Z. Adsorption of low concentration humic acid from water by palygorskite. Appl Clay Sci. 2012;67-68:164-8.
DOI: 10.1016/j.clay.2011.09.012
Calvet R. Le Sol; Propriétés et fonctions. France agricole Dunod P, editor. 2003;456.
Cugniet P. Study of the aggregation of solid particles in a non-wetting medium. Interpretation and modeling [doctoral thesis] at National School of Mines of Saint-Etienne. France: Saint-Etienne. 2003;187.
Kleber M, Eusterhues K, Keiluweitk M, Mikutta C, Mikutta R, Nico PS. Mineral–organic associations: formation, properties, and relevance in soil environments. Mineral–organic association. Elsevier Inc. 2015;130, 0065-2113.
Hengpraprom S, Lee CM, Coates JT. Sorption of humic acids and α-endosulfan by clay minerals. Environ Toxicol Chem. 2006;25(1):11-7.
DOI: 10.1897/05-119r.1, PMID 16494219.
Tipping E. The adsorption of aquatic humic substances by iron oxides. Geochim Cosmochim Acta. 1981;45(2):191-9.
DOI: 10.1016/0016-7037(81)90162-9
Specht CH, Kumke MU, Frimmel FH. Characterization of NOM adsorption to clay minerals by size exclusion chromatography. Water Res. 2000; 34(16):4063-9.
DOI: 10.1016/S0043-1354(00)00148-2
Murphy EM, Zachara JM, Smith SC. Influence of mineral-bound humic substances on the sorption of hydrophobic organic compounds. Environ Sci Technol. 1990;24(10):1507-16.
DOI: 10.1021/es00080a009
Vermeer AWP, van Riemsdijk WH, Koopal LK. Adsorption of humic acid to mineral particles. 1. Specific and electrostatic interactions. Langmuir. 1998;14(10): 2810-9.
DOI: 10.1021/la970624r
Lützow M, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, et al. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review. Eur J Soil Sci. 2006;57(4):426-45.
DOI: 10.1111/j.1365-2389.2006.00809.x
Coulibaly LS, Akpo SK, Yvon J, Coulibaly L. Fourier Transform Infra-Red (FTIR) spectroscopy investigation, dose effect, kinetics and adsorption capacity of phosphate from aqueous solution onto laterite and sandstone. J Environ Manage. 2016;183(3):1032-40.
DOI: 10.1016/j.jenvman.2016.09.061, PMID 27692512.
Gu B, Schmitt J, Chem Z, Liang L, McCarthy JF. Adsorption and desorption of natural organic matter on iron oxide: Mechanisms and models. Environ Sci Technol. 1994;6:28.
Monredon, Senani S. Interaction Organosilanes / Silice de précipitationDu milieu hydroalcoolique au milieu aqueux. Matériaux [thèse] de Doctorat à l’Université Pierre et Marie Curie - Paris VI, Paris, France. 2004;210.
-
Abstract View: 34 times
PDF Download: 3 times