Zinc Effects on Antioxidative Enzymes and Nitrate Reductase Activity in Phaseolus vulgaris (Common Bean) Seedling
PLANT CELL BIOTECHNOLOGY AND MOLECULAR BIOLOGY, Volume 24, Issue 1-2,
Page 42-51
DOI:
10.56557/pcbmb/2023/v24i1-28185
Abstract
The present study analyses antioxidative enzymes and in vitro NR activity in common bean seedlings in response to ZnCl2 supply over the range of 0 – 1 mM concentrations. Bean seedlings were grown in plastic pots containing acid washed sand for 10 days and watered daily with ½ Strength Hoagland’s Solution containing 5 mM NH4NO3 as nitrogen source and desired concentration of ZnCl2. Zn supply increased seedling weight and shoot length at 0.001 mM whereas root length decreased at all concentrations.
Amongst the antioxidative enzymes, super oxide dismutase (SOD) activity increased up to 0.1 mM significantly and then decreased at 1 mM in leaf tissue whereas in root tissue it decreased at 0.001 mM and then increased significantly. The catalase (CAT) activity increased at all the concentration being more prominent at 0.1 mM in leaf whereas in roots it increased substantially at 0.1 and 1 mM Zn. Ascorbate peroxidase (APX) activity in leaf increased at 0.1 mM but decreased at 0.001 and 1 mM, whereas in roots it decreased at all the concentration. Various in vitro activities of NR were analysed in response to Zn supply. The effect of Zn on NADH-NR is more substantial than MVH-NR at all the concentrations. Also NRmax and NRact increased at all the concentration of Zn being most prominent at 0.1 mM in leaf and at 1 mM in root tissue.
- ZnCl2 effects
- Phaseolus vulgaris
- In vitro Nitrate reductase activity
How to Cite
References
Yang M, Li Y, Liu Z, Tian J, Liang L, Qiu Y, et al. A high activity zinc transporter OsZIP9 mediates zinc uptake in rice. Plant J. 2020;103(5):1695-709. DOI: 10.1111/tpj.14855, PMID 32449251.
Alsafran M, Usman K, Ahmed B, Rizwan M, Saleem MH, Al Jabri H. Understanding the phytoremediation mechanisms of potentially toxic elements: A proteomic overview of recent advances. Front Plant Sci. 2022;13:881242. DOI: 10.3389/fpls.2022.881242, PMID 35646026.
Srivastava HS. Regulation of nitrate reductase in higher plants. Phytochemistry. 1980;19(5):725-33.
DOI: 10.1016/0031-9422(80)85100-4.
Solomonson LP, Barber MJ. Assimilatory nitrate reductase: Functional properties and regulation. Annu Rev Plant Physiol Plant Mol Biol. 1990;41(1):225-53. DOI: 10.1146/annurev.pp.41.060190.001301.
Yamasaki H, Sakihama Y. Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vivo evidence for the NR-dependent formation of active nitrogen species. FEBS Lett. 1999;468:89-92.
Kaiser WM, Weiner H, Huber SC. Nitrate reductase in higher plants: A case study for transduction of environmental stimuli into control of catalytic activity. Physiol Plant. 1999;105(2):384-9. DOI: 10.1034/j.1399-3054.1999.105225.x.
Beyer WF, Fridovich I. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem. 1987;161(2):559-66.DOI: 10.1016/0003-2697(87)90489-1, PMID 3034103.
Aebi H. Catalase in vivo. Methods Enzymol. 1984;105:121-6. DOI: 10.1016/s0076-6879(84)05016-3, PMID 6727660.
Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981;22:867-80.
Oaks A, Wallace W, Stevens D. Synthesis and turnover of nitrate reductase in corn roots. Plant Physiol. 1972;50(6):649-54. DOI: 10.1104/pp.50.6.649, PMID 16658236.
di Rigano VM, Vona V, Lobosco O, Carillo P, Lunn JE, Carfagna S, et al. Temperature dependence of nitrate reductase in the psychrophilic unicellular alga Koliella antarctica and the mesophilic alga Chlorella sorokiniana. Plant Cell Environ. 2006;29(7):1400-9. DOI: 10.1111/j.1365-3040.2006.01523.x, PMID 17080961.
Botrel A, Kaiser WM. Nitrate reductase activation state in barley roots in relation to the energy and carbohydrate status. Planta. 1997;201(4):496-501. DOI: 10.1007/s004250050094, PMID 9151451.
Vaillant N, Monnet F, Hitmi A, Sallanon H, Coudret A. Comparative study of responses in four Datura species to a zinc stress. Chemosphere. 2005;59(7):1005-13. DOI: 10.1016/j.chemosphere.2004.11.030, PMID 15823334.
Solanki R, Dhankhar R. Biochemical changes and adaptive strategies of plants under heavy metal stress. Biologia. 2011;66(2):195-204. DOI: 10.2478/s11756-011-0005-6.
Gupta S, Meena MK, Datta S. Effect of selected heavy metals (lead and zinc) on seedling growth of soybean Glycine max (l.) merr. Int J Pharm Pharm Sci. 2016;8(8):302-5.
Manivasagaperumal R, Balamurugan S, Thiyagarajan Gand Sekar J. Effect of zinc on germination, seedling growth and biochemical content of cluster bean (Cyamopsis tetragonoloba (L.)Taub) current botany. 2011;2(5):11-5.
Jaleel CA, Sankar B, Murali PV, Gomathinayagam M, Lakshmanan GMA, Panneerselvam R. Water deficit stress effects on reactive oxygen metabolism in Catharanthus roseus: impacts on ajmalicine accumulation. Colloids Surf B Biointerfaces. 2008;62(1):105-11. DOI: 10.1016/j.colsurfb.2007.09.026, PMID 17996429.
Prasad KVSK, Paradha Saradhi P, Sharmila P. Concerted action of antioxidant enzymes and curtailed growth under zinc toxicity in Brassica juncea. Environ Exp Bot. 1999;42(1):1-10. DOI: 10.1016/S0098-8472(99)00013-1
Radi? S, Babi? M, Skobi? D, Roje V, Pevalek-Kozlina B. Ecotoxicological effects of aluminum and zinc on growth and antioxidants in Lemna minor L. Ecotoxicol Environ Saf. 2010;73(3):336-42. DOI: 10.1016/j.ecoenv.2009.10.014, PMID 19914715.
Gomes MP, Duarte DM, Carneiro MMLC, Barreto LC, Carvalho M, Soares AM, et al. Zinc tolerance modulation in Myracrodruon urundeuva plants. Plant Physiol Biochem. 2013;67:1-6. DOI: 10.1016/j.plaphy.2013.02.018, PMID 23524298.
Song A, Li P, Li Z, Fan F, Nikolic M, Liang Y. The alleviation of zinc toxicity by silicon is related to zinc transport and antioxidative reactions in rice. Plant Soil. 2011;344(1-2):319-33. DOI: 10.1007/s11104-011-0749-3
Chaoui A, Mazhoudi S, Ghorbal MH, El Ferjani EE. Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci. 1997;127(2):139-47. DOI: 10.1016/S0168-9452(97)00115-5
Cherif J, Mediouni C, Ben Ammar WB, Jemal F. Interactions of zinc and cadmium toxicity in their effects on growth and in antioxidative systems in tomato plants (Solanum lycopersicum). J Environ Sci (China). 2011;23(5):837-44.
DOI: 10.1016/s1001-0742(10)60415-9, PMID 21790058.
Mukherjee A, Peralta-Videa JR, Bandyopadhyay S, Rico CM, Zhao L, Gardea-Torresdey JL. Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics. 2014;6(1):132-8.
DOI: 10.1039/c3mt00064h, PMID 24190632.
Li X, Yang Y, Jia L, Chen H, Wei X. Zinc-induced oxidative damage,antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants. Ecotoxicol Environ Saf. 2013;89:150-7. DOI: 10.1016/j.ecoenv.2012.11.025, PMID 23260180.
Li X, Yang Y, Zhang J, Jia L, Li Q, Zhang T et al. Zinc induced phytotoxicity mechanism involved in root growth of Triticum aestivum L. Ecotoxicol Environ Saf. 2012;86:198-203. DOI: 10.1016/j.ecoenv.2012.09.021, PMID 23067545.
Dai HP, Shan CJ, Zhao H, Li JC, Jia GL, Jiang H et al. The difference in antioxidant capacity of four alfalfa cultivars in response to Zn. Ecotoxicol Environ Saf. 2015;114:312-7.DOI: 10.1016/j.ecoenv.2014.04.044,
PMID 25037070.
-
Abstract View: 42 times
PDF Download: 2 times